Treffer: On various restricted sumsets
Title:
On various restricted sumsets
Authors:
Source:
Journal of Number Theory. 114:209-220
Publication Status:
Preprint
Publisher Information:
Elsevier BV, 2005.
Publication Year:
2005
Subject Terms:
11B75, Permutations, words, matrices, 05A05, 11C08, 11P70, Algebra and Number Theory, Mathematics - Number Theory, Inverse problems of additive number theory, including sumsets, combinatorial Nullstellensatz, 0102 computer and information sciences, 01 natural sciences, Sequences (mod \(m\)), Other combinatorial number theory, FOS: Mathematics, sumset, Mathematics - Combinatorics, Combinatorics (math.CO), Number Theory (math.NT), 0101 mathematics, Polynomials in number theory
Document Type:
Fachzeitschrift
Article
File Description:
application/xml
Language:
English
ISSN:
0022-314X
DOI:
10.1016/j.jnt.2005.06.004
DOI:
10.48550/arxiv.math/0410529
Access URL:
http://arxiv.org/abs/math/0410529
https://zbmath.org/2214881
https://doi.org/10.1016/j.jnt.2005.06.004
http://math.nju.edu.cn/~zwsun/71y.pdf
https://math.nju.edu.cn/~zwsun/71y.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0022314X05001599
https://www.sciencedirect.com/science/article/pii/S0022314X05001599
https://core.ac.uk/display/21429779
https://zbmath.org/2214881
https://doi.org/10.1016/j.jnt.2005.06.004
http://math.nju.edu.cn/~zwsun/71y.pdf
https://math.nju.edu.cn/~zwsun/71y.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0022314X05001599
https://www.sciencedirect.com/science/article/pii/S0022314X05001599
https://core.ac.uk/display/21429779
Rights:
Elsevier Non-Commercial
arXiv Non-Exclusive Distribution
arXiv Non-Exclusive Distribution
Accession Number:
edsair.doi.dedup.....027a2408b0c76472e56223c634f782e4
Database:
OpenAIRE
Weitere Informationen
For finite subsets A_1,...,A_n of a field, their sumset is given by {a_1+...+a_n: a_1 in A_1,...,a_n in A_n}. In this paper we study various restricted sumsets of A_1,...,A_n with restrictions of the following forms: a_i-a_j not in S_{ij}, or alpha_ia_i not=alpha_ja_j, or a_i+b_i not=a_j+b_j (mod m_{ij}). Furthermore, we gain an insight into relations among recent results on this area obtained in quite different ways.
11 pages; final version for J. Number Theory