Treffer: Interpolating functions of minimal norm, star-invariant subspaces and kernels of Toeplitz operators: Interpolating functions of minimal norm, star-invariant subspaces, and kernels of Toeplitz operators

Title:
Interpolating functions of minimal norm, star-invariant subspaces and kernels of Toeplitz operators: Interpolating functions of minimal norm, star-invariant subspaces, and kernels of Toeplitz operators
Contributors:
Universitat de Barcelona
Source:
Recercat. Dipósit de la Recerca de Catalunya
instname
Articles publicats en revistes (Matemàtiques i Informàtica)
Dipòsit Digital de la UB
Universidad de Barcelona
Publisher Information:
American Mathematical Society (AMS), 1992.
Publication Year:
1992
Document Type:
Fachzeitschrift Article<br />Other literature type
File Description:
application/pdf; application/xml
Language:
English
ISSN:
1088-6826
0002-9939
DOI:
10.1090/s0002-9939-1992-1100649-2
DOI:
10.2307/2159482
Rights:
CC 0
Accession Number:
edsair.doi.dedup.....03545c58d37f7b2ce6fcb166c0a5347c
Database:
OpenAIRE

Weitere Informationen

It is proved that for each inner function θ \theta there exists an interpolating sequence { z n } \left \{ {{z_n}} \right \} in the disk such that sup n | θ ( z n ) | > 1 {\sup _n}|\theta ({z_n})| > 1 , but every function g g in H ∞ {H^\infty } with g ( z n ) = θ ( z n ) ( n = 1 , 2 , … ) g({z_n}) = \theta ({z_n})(n = 1,2, \ldots ) satisfies | | g | | ∞ ≥ 1 ||g|{|_\infty } \geq 1 . Some results are obtained concerning interpolation in the star-invariant subspace H 2 ⊖ θ H 2 {H^2} \ominus \theta {H^2} . This paper also contains a "geometric" result connected with kernels of Toeplitz operators.