Treffer: Interpolating functions of minimal norm, star-invariant subspaces and kernels of Toeplitz operators: Interpolating functions of minimal norm, star-invariant subspaces, and kernels of Toeplitz operators
Title:
Interpolating functions of minimal norm, star-invariant subspaces and kernels of Toeplitz operators: Interpolating functions of minimal norm, star-invariant subspaces, and kernels of Toeplitz operators
Authors:
Contributors:
Universitat de Barcelona
Source:
Recercat. Dipósit de la Recerca de Catalunya
instname
Articles publicats en revistes (Matemàtiques i Informàtica)
Dipòsit Digital de la UB
Universidad de Barcelona
instname
Articles publicats en revistes (Matemàtiques i Informàtica)
Dipòsit Digital de la UB
Universidad de Barcelona
Publisher Information:
American Mathematical Society (AMS), 1992.
Publication Year:
1992
Subject Terms:
interpolating Blaschke product, Funcions de variables complexes, Operator theory, 0102 computer and information sciences, inner functions, Moment problems and interpolation problems in the complex plane, Teoria d'operadors, Linear operators, 01 natural sciences, \(H^p\)-classes, interpolating sequence, hyperbolic metric, Functions of complex variables, Toeplitz operator, Funcions enteres, Funcions meromorfes, Meromorphic functions, extreme points, Entire functions, 0101 mathematics, Operadors lineals, star-invariant subspaces
Document Type:
Fachzeitschrift
Article<br />Other literature type
File Description:
application/pdf; application/xml
Language:
English
ISSN:
1088-6826
0002-9939
0002-9939
DOI:
10.1090/s0002-9939-1992-1100649-2
DOI:
10.2307/2159482
Access URL:
https://www.ams.org/proc/1992-116-04/S0002-9939-1992-1100649-2/S0002-9939-1992-1100649-2.pdf
http://diposit.ub.edu/dspace/bitstream/2445/97261/1/582421.pdf
http://hdl.handle.net/2445/97261
https://hdl.handle.net/2445/97261
https://zbmath.org/126066
https://doi.org/10.2307/2159482
https://www.ams.org/journals/proc/1992-116-04/S0002-9939-1992-1100649-2/home.html
https://www.jstor.org/stable/pdfplus/2159482.pdf
http://diposit.ub.edu/dspace/handle/2445/97261
http://diposit.ub.edu/dspace/bitstream/2445/97261/1/582421.pdf
http://hdl.handle.net/2445/97261
https://hdl.handle.net/2445/97261
https://zbmath.org/126066
https://doi.org/10.2307/2159482
https://www.ams.org/journals/proc/1992-116-04/S0002-9939-1992-1100649-2/home.html
https://www.jstor.org/stable/pdfplus/2159482.pdf
http://diposit.ub.edu/dspace/handle/2445/97261
Rights:
CC 0
Accession Number:
edsair.doi.dedup.....03545c58d37f7b2ce6fcb166c0a5347c
Database:
OpenAIRE
Weitere Informationen
It is proved that for each inner function θ \theta there exists an interpolating sequence { z n } \left \{ {{z_n}} \right \} in the disk such that sup n | θ ( z n ) | > 1 {\sup _n}|\theta ({z_n})| > 1 , but every function g g in H ∞ {H^\infty } with g ( z n ) = θ ( z n ) ( n = 1 , 2 , … ) g({z_n}) = \theta ({z_n})(n = 1,2, \ldots ) satisfies | | g | | ∞ ≥ 1 ||g|{|_\infty } \geq 1 . Some results are obtained concerning interpolation in the star-invariant subspace H 2 ⊖ θ H 2 {H^2} \ominus \theta {H^2} . This paper also contains a "geometric" result connected with kernels of Toeplitz operators.