Treffer: Multipliers on Vector Valued Bergman Spaces: Multipliers on vector valued Bergman spaces.
Title:
Multipliers on Vector Valued Bergman Spaces: Multipliers on vector valued Bergman spaces.
Authors:
Source:
Dialnet CRIS Repositorio institucional de la Universidad de La Rioja
instname
RIUR: Repositorio Institucional de la Universidad de La Rioja
Universidad de La Rioja (UR)
RIUR. Repositorio Institucional de la Universidad de La Rioja
instname
RIUR: Repositorio Institucional de la Universidad de La Rioja
Universidad de La Rioja (UR)
RIUR. Repositorio Institucional de la Universidad de La Rioja
Publisher Information:
Canadian Mathematical Society, 2002.
Publication Year:
2002
Subject Terms:
Spaces of vector- and operator-valued functions, vector-valued Bergman spaces, coefficient multipliers, Banach spaces of continuous, differentiable or analytic functions, 4. Education, Linear operators on function spaces (general), Spaces of bounded analytic functions of one complex variable, 0101 mathematics, Multipliers in one variable harmonic analysis, 01 natural sciences
Document Type:
Fachzeitschrift
Article
File Description:
application/pdf; application/xml
Language:
English
ISSN:
1496-4279
0008-414X
0008-414X
DOI:
10.4153/cjm-2002-044-3
Access URL:
http://www.uv.es/~oblasco/Investigacion/VVF/Multipliers2.pdf
https://ur.portalcientifico.es/documentos/5bbc69a8b750603269e81f2c
https://investigacion.unirioja.es/documentos/5bbc69a8b750603269e81f2c
https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/multipliers-on-vector-valued-bergman-spaces/E7ED10BC263ED7FD86AC2687E98A2281
https://ur.portalcientifico.es/documentos/5bbc69a8b750603269e81f2c
https://investigacion.unirioja.es/documentos/5bbc69a8b750603269e81f2c
https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/multipliers-on-vector-valued-bergman-spaces/E7ED10BC263ED7FD86AC2687E98A2281
Rights:
Cambridge Core User Agreement
Accession Number:
edsair.doi.dedup.....0a6b2a04c23c76f255e73960b5e92a30
Database:
OpenAIRE
Weitere Informationen
Let X be a complex Banach space and let Bp(X) denote the vector-valued Bergman space on the unit disc for 1 ≤ p < ∞. A sequence (Tn)n of bounded operators between two Banach spaces X and Y defines a multiplier between Bp(X) and Bq(Y) (resp. Bp(X) and lq(Y)) if for any function we have that belongs to Bq(Y) (resp. (Tn(xn))n ∈ lq(Y)). Several results on these multipliers are obtained, some of them depending upon the Fourier or Rademacher type of the spaces X and Y. New properties defined by the vector-valued version of certain inequalities for Taylor coefficients of functions in Bp(X) are introduced.