Treffer: Multipliers on Vector Valued Bergman Spaces: Multipliers on vector valued Bergman spaces.

Title:
Multipliers on Vector Valued Bergman Spaces: Multipliers on vector valued Bergman spaces.
Source:
Dialnet CRIS Repositorio institucional de la Universidad de La Rioja
instname
RIUR: Repositorio Institucional de la Universidad de La Rioja
Universidad de La Rioja (UR)
RIUR. Repositorio Institucional de la Universidad de La Rioja
Publisher Information:
Canadian Mathematical Society, 2002.
Publication Year:
2002
Document Type:
Fachzeitschrift Article
File Description:
application/pdf; application/xml
Language:
English
ISSN:
1496-4279
0008-414X
DOI:
10.4153/cjm-2002-044-3
Rights:
Cambridge Core User Agreement
Accession Number:
edsair.doi.dedup.....0a6b2a04c23c76f255e73960b5e92a30
Database:
OpenAIRE

Weitere Informationen

Let X be a complex Banach space and let Bp(X) denote the vector-valued Bergman space on the unit disc for 1 ≤ p < ∞. A sequence (Tn)n of bounded operators between two Banach spaces X and Y defines a multiplier between Bp(X) and Bq(Y) (resp. Bp(X) and lq(Y)) if for any function we have that belongs to Bq(Y) (resp. (Tn(xn))n ∈ lq(Y)). Several results on these multipliers are obtained, some of them depending upon the Fourier or Rademacher type of the spaces X and Y. New properties defined by the vector-valued version of certain inequalities for Taylor coefficients of functions in Bp(X) are introduced.