Treffer: Equivalence of quotient Hilbert modules

Title:
Equivalence of quotient Hilbert modules
Source:
Proceedings Mathematical Sciences. 113:281-291
Publication Status:
Preprint
Publisher Information:
Springer Science and Business Media LLC, 2003.
Publication Year:
2003
Document Type:
Fachzeitschrift Article<br />Other literature type
File Description:
application/xml
Language:
English
ISSN:
0973-7685
0253-4142
DOI:
10.1007/bf02829607
DOI:
10.1090/s0002-9947-07-04434-0
DOI:
10.48550/arxiv.math/0310263
DOI:
10.48550/arxiv.math/0507553
Rights:
Springer TDM
arXiv Non-Exclusive Distribution
URL: https://www.ams.org/publications/copyright-and-permissions
Accession Number:
edsair.doi.dedup.....0e5cda6914a55a5c72211d7cc1ba0ac3
Database:
OpenAIRE

Weitere Informationen

For any open, connected and bounded set Ω ⊆ C m \Omega \subseteq \mathbb {C}^m , let A \mathcal A be a natural function algebra consisting of functions holomorphic on Ω \Omega . Let M \mathcal M be a Hilbert module over the algebra A \mathcal A and let M 0 ⊆ M \mathcal M_0\subseteq \mathcal M be the submodule of functions vanishing to order k k on a hypersurface Z ⊆ Ω \mathcal Z \subseteq \Omega . Recently the authors have obtained an explicit complete set of unitary invariants for the quotient module Q = M ⊖ M 0 \mathcal Q=\mathcal M \ominus \mathcal M_0 in the case of k = 2 k=2 . In this paper, we relate these invariants to familiar notions from complex geometry. We also find a complete set of unitary invariants for the general case. We discuss many concrete examples in this setting. As an application of our equivalence results, we characterise certain homogeneous Hilbert modules over the bi-disc algebra.