Treffer: On distinct sums and distinct distances: On distinct sums and distinct distances.
Title:
On distinct sums and distinct distances: On distinct sums and distinct distances.
Authors:
Source:
Advances in Mathematics. 180:275-289
Publisher Information:
Elsevier BV, 2003.
Publication Year:
2003
Subject Terms:
Document Type:
Fachzeitschrift
Article
File Description:
application/xml
Language:
English
ISSN:
0001-8708
DOI:
10.1016/s0001-8708(03)00004-5
Access URL:
Rights:
Elsevier Non-Commercial
Accession Number:
edsair.doi.dedup.....19d391a454aef17de3c270024ecb0dbd
Database:
OpenAIRE
Weitere Informationen
For a real \(n\) by \(s\) matrix \(A=(a_{ij})\) consider \(S(A)=\{a_{ij}+a_{ik}:1 \leq i\leq n,\;1\leq j0\) is arbitrary, thereby improving the bound \(\Omega (n^{6/7})\) of \textit{J. Solymosi} and \textit{Cs. D. Tóth} [Discrete Comput. Geom. 25, No. 4, 629--634 (2001; Zbl 0988.52027)]. The proof of the main result uses entropies and linear programs. For some small values of \(s,\) the numbers \(f_{s}(n)\) are determined more precisely by elementary methods.