Treffer: Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems
Title:
Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems
Authors:
Source:
Ergodic Theory and Dynamical Systems. 16:805-819
Publisher Information:
Cambridge University Press (CUP), 1996.
Publication Year:
1996
Subject Terms:
Ergodic theorems, spectral theory, Markov operators, Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.), Functional analytic techniques in dynamical systems, zeta functions, (Ruelle-Frobenius) transfer operators, etc, 4. Education, generalized Fredholm determinant, Axiom A flows, Markov partitions, 0101 mathematics, generalized Selberg zeta function, 01 natural sciences
Document Type:
Fachzeitschrift
Article
File Description:
application/xml
Language:
English
ISSN:
1469-4417
0143-3857
0143-3857
DOI:
10.1017/s0143385700009111
Access URL:
http://cds.cern.ch/record/260160/files/P00021854.pdf
https://zbmath.org/927259
https://doi.org/10.1017/s0143385700009111
https://www.cambridge.org/core/journals/ergodic-theory-and-dynamical-systems/article/generalized-fredholm-determinants-and-selberg-zeta-functions-for-axiom-a-dynamical-systems/5CCDE98C3D58F37B45E78AD07B29C339
https://zbmath.org/927259
https://doi.org/10.1017/s0143385700009111
https://www.cambridge.org/core/journals/ergodic-theory-and-dynamical-systems/article/generalized-fredholm-determinants-and-selberg-zeta-functions-for-axiom-a-dynamical-systems/5CCDE98C3D58F37B45E78AD07B29C339
Rights:
Cambridge Core User Agreement
Accession Number:
edsair.doi.dedup.....1c199a4c7ce9e61c97b08b8b54a80672
Database:
OpenAIRE
Weitere Informationen
We consider a generalized Fredholm determinant d(z) and a generalized Selberg zeta function ζ(ω)−1 for Axiom A diffeomorphisms of a surface and Axiom A flows on three-dimensional manifolds, respectively. We show that d(z) and ζ(ω)−1 extend to entire functions in the complex plane. That the functions are entire and not only meromorphic is proved by a new method, identifying removable singularities by a change of Markov partitions.