Result:
Strong Property (T), weak amenability and $\ell^p$-cohomology in $\tilde{A}_2$-buildings: Strong property (T), weak amenability and \(\ell^p\)-cohomology in \(\tilde{A}_2\)-buildings
Saved in:
Title:
Strong Property (T), weak amenability and $\ell^p$-cohomology in $\tilde{A}_2$-buildings: Strong property (T), weak amenability and \(\ell^p\)-cohomology in \(\tilde{A}_2\)-buildings
de la Salle, Mikael, Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Camille Jordan (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), École normale supérieure de Lyon (ENS de Lyon), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Équations aux dérivées partielles, analyse (EDPA), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Justus-Liebig-Universität Gießen = Justus Liebig University (JLU), ANR-19-CE40-0002,ANCG,Analyse non commutative sur les groupes et les groupes quantiques(2019), ANR-10-LABX-0070,MILYON,Community of mathematics and fundamental computer science in Lyon(2010), ANR-16-CE40-0022,AGIRA,Actions de Groupes, Isométries, Rigidité et Aléa(2016)
Source:
Annales Scientifiques de l'École Normale Supérieure.
We prove that cocompact (and more generally: undistorted) lattices on $\tilde{A}_2$-buildings satisfy Lafforgue's strong property (T), thus exhibiting the first examples that are not related to algebraic groups over local fields. Our methods also give two further results. First, we show that the first $\ell^p$-cohomology of an $\tilde{A}_2$-building vanishes for any finite $p$. Second, we show that the non-commutative $L^p$-space for $p$ not in $[\frac 4 3,4]$ and the reduced $C^*$-algebra associated to an $\tilde{A}_2$-lattice do not have the operator space approximation property and, consequently, that the lattice is not weakly amenable. v1: 68 pages, 6 figures; v2: 79 pages, many improvements in the presentation. To appear in Ann. Sci. \'Ecole Norm. Sup