Treffer: On the power method in max algebra

Title:
On the power method in max algebra
Source:
Linear Algebra and its Applications. :17-32
Publisher Information:
Elsevier BV, 1999.
Publication Year:
1999
Document Type:
Fachzeitschrift Article<br />Conference object
File Description:
application/xml
Language:
English
ISSN:
0024-3795
DOI:
10.1016/s0024-3795(98)10171-4
Rights:
Elsevier Non-Commercial
"In Copyright" Rights Statement
Accession Number:
edsair.doi.dedup.....1e728f63f76e6cff8de80e8ebd7ec4c3
Database:
OpenAIRE

Weitere Informationen

Let an eigenvalue problem \(A\otimes x=\lambda x\) be given with an irreducible and nonnegative matrix \(A\), \((A\otimes x)_i=\max_j(a_{ij}x_j)\) and \(\lambda\) turns out to be the maximum circuit geometric mean \(\mu(A)\). For computing \(\mu(A)\) and eigenvector \(x\) a power method algorithm is given and some asymptotic formulas relating \(\mu(A)\), the spectral radius and norms are also derived.