Treffer: RETRACTED: A generalization of the Schur–Siegel–Smyth trace problem: Retracted: A generalization of the Schur-Siegel-Smyth trace problem
Title:
RETRACTED: A generalization of the Schur–Siegel–Smyth trace problem: Retracted: A generalization of the Schur-Siegel-Smyth trace problem
Authors:
Source:
Journal of Mathematical Analysis and Applications. 436:489-500
Publisher Information:
Elsevier BV, 2016.
Publication Year:
2016
Subject Terms:
Document Type:
Fachzeitschrift
Article
File Description:
application/xml
Language:
English
ISSN:
0022-247X
DOI:
10.1016/j.jmaa.2015.12.003
Access URL:
https://zbmath.org/6536918
https://doi.org/10.1016/j.jmaa.2015.12.003
https://www.sciencedirect.com/science/article/pii/S0022247X15011099
https://www.sciencedirect.com/science/article/abs/pii/S0022247X15011099
https://experts.illinois.edu/en/publications/a-generalization-of-the-schur-siegel-smyth-trace-problem
https://doi.org/10.1016/j.jmaa.2015.12.003
https://www.sciencedirect.com/science/article/pii/S0022247X15011099
https://www.sciencedirect.com/science/article/abs/pii/S0022247X15011099
https://experts.illinois.edu/en/publications/a-generalization-of-the-schur-siegel-smyth-trace-problem
Rights:
Elsevier Non-Commercial
Accession Number:
edsair.doi.dedup.....1e7d6ec366e462e76ea86d251bb227fb
Database:
OpenAIRE
Weitere Informationen
The absolute trace \(A(f)\) of a polynomial \(f(X)=X^n-a_{n-1}X^{n-1}+ \dots+(-1)^na_0\in \mathbb Z[X]\) is defined by \(A(f)=a_{n-1}/n\). Let \(\rho\) be the supremum of all positive \(c\) such that that for every \(\varepsilon>0\) there are at most finitely many irreducible polynomials with only real roots satisfying \(A(f)