Treffer: Permutation classes and polyomino classes with excluded submatrices
Title:
Permutation classes and polyomino classes with excluded submatrices
Contributors:
Battaglino, Daniela, Bouvel, Mathilde, Frosini, Andrea, Rinaldi, Simone
Source:
Mathematical Structures in Computer Science
Publication Status:
Preprint
Publisher Information:
Cambridge University Press (CUP), 2015.
Publication Year:
2015
Subject Terms:
Mathematics (miscellaneous), polyomino, enumerative combinatorics, forbidden patterns, 4. Education, FOS: Mathematics, Mathematics - Combinatorics, Computer Science Applications1707 Computer Vision and Pattern Recognition, Combinatorics (math.CO), 0102 computer and information sciences, 0101 mathematics, 16. Peace & justice, 01 natural sciences
Document Type:
Fachzeitschrift
Article<br />Other literature type
File Description:
STAMPA
Language:
English
ISSN:
1469-8072
0960-1295
0960-1295
DOI:
10.1017/s0960129515000250
DOI:
10.48550/arxiv.1402.2260
Access URL:
http://arxiv.org/pdf/1402.2260
http://arxiv.org/abs/1402.2260
https://arxiv.org/abs/1402.2260
https://arxiv.org/pdf/1402.2260v2
http://ui.adsabs.harvard.edu/abs/2014arXiv1402.2260B/abstract
https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/permutation-classes-and-polyomino-classes-with-excluded-submatrices/28AC433798B147602A28008067DE558B
https://flore.unifi.it/handle/2158/1039859
https://dblp.uni-trier.de/db/journals/mscs/mscs27.html#BattaglinoBFR17
https://usiena-air.unisi.it/handle/11365/1035011
http://journals.cambridge.org/article_S0960129515000250
http://arxiv.org/abs/1402.2260
https://arxiv.org/abs/1402.2260
https://arxiv.org/pdf/1402.2260v2
http://ui.adsabs.harvard.edu/abs/2014arXiv1402.2260B/abstract
https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/permutation-classes-and-polyomino-classes-with-excluded-submatrices/28AC433798B147602A28008067DE558B
https://flore.unifi.it/handle/2158/1039859
https://dblp.uni-trier.de/db/journals/mscs/mscs27.html#BattaglinoBFR17
https://usiena-air.unisi.it/handle/11365/1035011
http://journals.cambridge.org/article_S0960129515000250
Rights:
Cambridge Core User Agreement
arXiv Non-Exclusive Distribution
arXiv Non-Exclusive Distribution
Accession Number:
edsair.doi.dedup.....1fcd4525dbff48a224c83758e90a923c
Database:
OpenAIRE
Weitere Informationen
This article introduces an analogue of permutation classes in the context of polyominoes. For both permutation classes and polyomino classes, we present an original way of characterizing them by avoidance constraints (namely, with excluded submatrices) and we discuss how canonical such a description by submatrix-avoidance can be. We provide numerous examples of permutation and polyomino classes which may be defined and studied from the submatrix-avoidance point of view, and conclude with various directions for future research on this topic.