Treffer: On the real zeroes of the Hurwitz zeta-function and Bernoulli polynomials
Title:
On the real zeroes of the Hurwitz zeta-function and Bernoulli polynomials
Authors:
Source:
Journal of Mathematical Analysis and Applications. 305:712-721
Publication Status:
Preprint
Publisher Information:
Elsevier BV, 2005.
Publication Year:
2005
Subject Terms:
Bernoulli polynomials, Applied Mathematics, Hurwitz and Lerch zeta functions, 33E20, 12D10, 01 natural sciences, Hurwitz zeta-function, Mathematics - Classical Analysis and ODEs, General Mathematics (math.GM), real zeros, Bernoulli polynomials, Classical Analysis and ODEs (math.CA), FOS: Mathematics, 0101 mathematics, Bernoulli and Euler numbers and polynomials, Mathematics - General Mathematics, Analysis
Document Type:
Fachzeitschrift
Article
File Description:
application/xml
Language:
English
ISSN:
0022-247X
DOI:
10.1016/j.jmaa.2004.12.046
DOI:
10.48550/arxiv.math/0205183
Access URL:
http://arxiv.org/abs/math/0205183
https://core.ac.uk/display/82655131
https://www.sciencedirect.com/science/article/abs/pii/S0022247X04010674
https://ui.adsabs.harvard.edu/abs/2005JMAA..305..712V/abstract
https://repository.lboro.ac.uk/articles/On_the_real_zeroes_of_the_Hurwitz_zeta-function_and_Bernoulli_polynomials/9384470
https://www.sciencedirect.com/science/article/pii/S0022247X04010674
https://core.ac.uk/display/82655131
https://www.sciencedirect.com/science/article/abs/pii/S0022247X04010674
https://ui.adsabs.harvard.edu/abs/2005JMAA..305..712V/abstract
https://repository.lboro.ac.uk/articles/On_the_real_zeroes_of_the_Hurwitz_zeta-function_and_Bernoulli_polynomials/9384470
https://www.sciencedirect.com/science/article/pii/S0022247X04010674
Rights:
Elsevier Non-Commercial
arXiv Non-Exclusive Distribution
arXiv Non-Exclusive Distribution
Accession Number:
edsair.doi.dedup.....201b37ae8ff9b3e7e8c867e096e1ca80
Database:
OpenAIRE
Weitere Informationen
The behaviour of real zeroes of the Hurwitz zeta function $$��(s,a)=\sum_{r=0}^{\infty}(a+r)^{-s}\qquad\qquad a > 0$$ is investigated. It is shown that $��(s,a)$ has no real zeroes $(s=��,a)$ in the region $a >\frac{-��}{2��e}+\frac{1}{4��e}\log (-��) +1$ for large negative $��$. In the region $0 < a < \frac{-��}{2��e}$ the zeroes are asymptotically located at the lines $��+ 4a + 2m =0$ with integer $m$. If $N(p)$ is the number of real zeroes of $��(-p,a)$ with given $p$ then $$\lim_{p\to\infty}\frac{N(p)}{p}=\frac{1}{��e}.$$ As a corollary we have a simple proof of Inkeri's result that the number of real roots of the classical Bernoulli polynomials $B_n(x)$ for large $n$ is asymptotically equal to $\frac{2n}{��e}$.
9 pages, 2 figures