Treffer: A quantitative Khintchine-Groshev type theorem over a field of formal series

Title:
A quantitative Khintchine-Groshev type theorem over a field of formal series
Source:
Dodson, M M, Kristensen, S & Levesley, J 2005, 'A quantitative Khintchine-Groshev type theorem over a field of formal series', Indagationes Mathematicae, vol. 16, no. 2, pp. 171-177.
Publication Status:
Preprint
Publisher Information:
Elsevier BV, 2005.
Publication Year:
2005
Document Type:
Fachzeitschrift Article
File Description:
application/xml
Language:
English
ISSN:
0019-3577
DOI:
10.1016/s0019-3577(05)80020-5
DOI:
10.48550/arxiv.math/0401438
Rights:
Elsevier Non-Commercial
arXiv Non-Exclusive Distribution
Accession Number:
edsair.doi.dedup.....276cf09cc23fdb4f56358b67b5f5766c
Database:
OpenAIRE

Weitere Informationen

An asymptotic formula which holds almost everywhere is obtained for the number of solutions to the Diophantine inequalities |qA-p|1) over the field of formal Laurent series with coefficients from a finite field, and p and q are vectors of polynomials over the same finite field.
Revised version