Treffer: A quantitative Khintchine-Groshev type theorem over a field of formal series
Title:
A quantitative Khintchine-Groshev type theorem over a field of formal series
Authors:
Source:
Dodson, M M, Kristensen, S & Levesley, J 2005, 'A quantitative Khintchine-Groshev type theorem over a field of formal series', Indagationes Mathematicae, vol. 16, no. 2, pp. 171-177.
Publication Status:
Preprint
Publisher Information:
Elsevier BV, 2005.
Publication Year:
2005
Subject Terms:
asymptotic formula, Mathematics(all), Diophantine approximation, Positive characteristic, Systems of linear forms, Asymptotic formulae, Mathematics - Number Theory, Approximation in non-Archimedean valuations, positive characteristic, Diophantine approximation in probabilistic number theory, 11J83, 11J61, 01 natural sciences, Diophantine approximation, Metric theory, formal power series, FOS: Mathematics, Number Theory (math.NT), system of linear forms, 0101 mathematics
Document Type:
Fachzeitschrift
Article
File Description:
application/xml
Language:
English
ISSN:
0019-3577
DOI:
10.1016/s0019-3577(05)80020-5
DOI:
10.48550/arxiv.math/0401438
Access URL:
http://arxiv.org/abs/math/0401438
https://documat.unirioja.es/servlet/articulo?codigo=1210404
https://dialnet.unirioja.es/servlet/articulo?codigo=1210404
https://www.sciencedirect.com/science/article/pii/S0019357705800205
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.240.6932&rep=rep1&type=pdf
https://eprints.whiterose.ac.uk/6328/
http://ui.adsabs.harvard.edu/abs/2004math......1438D/abstract
https://pure.au.dk/portal/en/publications/e7a15560-a9d1-11da-bee9-02004c4f4f50
https://documat.unirioja.es/servlet/articulo?codigo=1210404
https://dialnet.unirioja.es/servlet/articulo?codigo=1210404
https://www.sciencedirect.com/science/article/pii/S0019357705800205
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.240.6932&rep=rep1&type=pdf
https://eprints.whiterose.ac.uk/6328/
http://ui.adsabs.harvard.edu/abs/2004math......1438D/abstract
https://pure.au.dk/portal/en/publications/e7a15560-a9d1-11da-bee9-02004c4f4f50
Rights:
Elsevier Non-Commercial
arXiv Non-Exclusive Distribution
arXiv Non-Exclusive Distribution
Accession Number:
edsair.doi.dedup.....276cf09cc23fdb4f56358b67b5f5766c
Database:
OpenAIRE
Weitere Informationen
An asymptotic formula which holds almost everywhere is obtained for the number of solutions to the Diophantine inequalities |qA-p|1) over the field of formal Laurent series with coefficients from a finite field, and p and q are vectors of polynomials over the same finite field.
Revised version