Treffer: Direct zero-sum problems for certain groups of rank three
Title:
Direct zero-sum problems for certain groups of rank three
Authors:
Contributors:
Girard, Benjamin, Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Université Paris 13 (UP13)-Institut Galilée-Centre National de la Recherche Scientifique (CNRS)
Source:
Journal of Number Theory. 197:297-316
Publication Status:
Preprint
Publisher Information:
Elsevier BV, 2019.
Publication Year:
2019
Subject Terms:
Finite abelian groups, inductive method, Group Theory (math.GR), 0102 computer and information sciences, Erdős-Ginzburg-Ziv constant, 01 natural sciences, [MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], FOS: Mathematics, Mathematics - Combinatorics, Number Theory (math.NT), 0101 mathematics, [MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR], 20K01, 11B30, Mathematics - Number Theory, finite abelian group, Davenport constant, 16. Peace & justice, [MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT], 05E15, [MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO], Arithmetic combinatorics, higher degree uniformity, Other combinatorial number theory, Combinatorics (math.CO), zero-sum sequence, Mathematics - Group Theory, [MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT]
Document Type:
Fachzeitschrift
Article
File Description:
application/xml; application/pdf
Language:
English
ISSN:
0022-314X
DOI:
10.1016/j.jnt.2018.08.016
DOI:
10.48550/arxiv.1806.07636
Access URL:
http://arxiv.org/pdf/1806.07636
http://arxiv.org/abs/1806.07636
https://hal.archives-ouvertes.fr/hal-01817518v2
https://www.sciencedirect.com/science/article/pii/S0022314X18302518
https://arxiv.org/pdf/1806.07636
https://hal.archives-ouvertes.fr/hal-01817518/document
https://arxiv.org/abs/1806.07636
http://ui.adsabs.harvard.edu/abs/2018arXiv180607636G/abstract
https://hal.science/hal-01817518v2/document
https://hal.science/hal-01817518v2
https://doi.org/10.1016/j.jnt.2018.08.016
http://arxiv.org/abs/1806.07636
https://hal.archives-ouvertes.fr/hal-01817518v2
https://www.sciencedirect.com/science/article/pii/S0022314X18302518
https://arxiv.org/pdf/1806.07636
https://hal.archives-ouvertes.fr/hal-01817518/document
https://arxiv.org/abs/1806.07636
http://ui.adsabs.harvard.edu/abs/2018arXiv180607636G/abstract
https://hal.science/hal-01817518v2/document
https://hal.science/hal-01817518v2
https://doi.org/10.1016/j.jnt.2018.08.016
Rights:
Elsevier Non-Commercial
arXiv Non-Exclusive Distribution
arXiv Non-Exclusive Distribution
Accession Number:
edsair.doi.dedup.....2cf73d3a197148c477d46eba69f23d70
Database:
OpenAIRE
Weitere Informationen
We determine the exact value of the $��$-constant and the multiwise Davenport constants for finite abelian groups of rank three having the form $G \simeq C_2 \oplus C_{n_2} \oplus C_{n_3}$ with $2 \mid n_2 \mid n_3$. Moreover, we determine the Erd��s-Ginzburg-Ziv constant of these groups under the assumption that $n_2/2$ has Property D or $n_2 = n_3$.
17 pages