Treffer: Direct zero-sum problems for certain groups of rank three

Title:
Direct zero-sum problems for certain groups of rank three
Contributors:
Girard, Benjamin, Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Université Paris 13 (UP13)-Institut Galilée-Centre National de la Recherche Scientifique (CNRS)
Source:
Journal of Number Theory. 197:297-316
Publication Status:
Preprint
Publisher Information:
Elsevier BV, 2019.
Publication Year:
2019
Document Type:
Fachzeitschrift Article
File Description:
application/xml; application/pdf
Language:
English
ISSN:
0022-314X
DOI:
10.1016/j.jnt.2018.08.016
DOI:
10.48550/arxiv.1806.07636
Rights:
Elsevier Non-Commercial
arXiv Non-Exclusive Distribution
Accession Number:
edsair.doi.dedup.....2cf73d3a197148c477d46eba69f23d70
Database:
OpenAIRE

Weitere Informationen

We determine the exact value of the $��$-constant and the multiwise Davenport constants for finite abelian groups of rank three having the form $G \simeq C_2 \oplus C_{n_2} \oplus C_{n_3}$ with $2 \mid n_2 \mid n_3$. Moreover, we determine the Erd��s-Ginzburg-Ziv constant of these groups under the assumption that $n_2/2$ has Property D or $n_2 = n_3$.
17 pages