Treffer: Compressed Drinfeld associators

Title:
Compressed Drinfeld associators
Authors:
Contributors:
Arxiv, Import
Source:
Journal of Algebra. 292:184-242
Publication Status:
Preprint
Publisher Information:
Elsevier BV, 2005.
Publication Year:
2005
Document Type:
Fachzeitschrift Article<br />Other literature type
File Description:
application/xml
Language:
English
ISSN:
0021-8693
DOI:
10.1016/j.jalgebra.2005.05.013
DOI:
10.48550/arxiv.math/0408398
Rights:
Elsevier Non-Commercial
arXiv Non-Exclusive Distribution
Accession Number:
edsair.doi.dedup.....35c0970cc40cd38486d3f6529cbdcbdc
Database:
OpenAIRE

Weitere Informationen

Drinfeld associator is a key tool in computing the Kontsevich integral of knots. A Drinfeld associator is a series in two non-commuting variables, satisfying highly complicated algebraic equations - hexagon and pentagon. The logarithm of a Drinfeld associator lives in the Lie algbera L generated by the symbols a,b,c modulo [a,b]=[b,c]=[c,a]. The main result is a description of compressed associators that satisfy the compressed pentagon and hexagon in the quotient L/[[L,L],[L,L]]. The key ingredient is an explicit form of Campbell-Baker-Hausdorff formula in the case when all commutators commute.
36 pages, 5 figures