Treffer: Compressed Drinfeld associators
Title:
Compressed Drinfeld associators
Authors:
Contributors:
Arxiv, Import
Source:
Journal of Algebra. 292:184-242
Publication Status:
Preprint
Publisher Information:
Elsevier BV, 2005.
Publication Year:
2005
Subject Terms:
extended Bernoulli numbers, Hexagon equation, Campbell–Baker–Hausdorff formula, Knot, Lie algebra, Lie algebras and Lie superalgebras, Compressed Vassiliev invariants, Pentagon equation, Campbell-Baker-Hausdorff formula, 01 natural sciences, compressed Vassiliev invariants, Mathematics - Geometric Topology, Chord diagrams, Extended Bernoulli numbers, knot, Mathematics - Quantum Algebra, FOS: Mathematics, Quantum Algebra (math.QA), 0101 mathematics, Other Dirichlet series and zeta functions, [MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT], Zeta function, [MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA], Algebra and Number Theory, Vassiliev invariants, Drinfeld associator, 57M25, 57M27, 11B68, 17B01, pentagon equation, Miscellaneous applications of number theory, Geometric Topology (math.GT), Kontsevich integral, Invariants of knots and \(3\)-manifolds, zeta function, chord diagrams, compressed associator, Compressed associator, hexagon equation, Bernoulli and Euler numbers and polynomials, Bernoulli numbers
Document Type:
Fachzeitschrift
Article<br />Other literature type
File Description:
application/xml
Language:
English
ISSN:
0021-8693
DOI:
10.1016/j.jalgebra.2005.05.013
DOI:
10.48550/arxiv.math/0408398
Access URL:
http://arxiv.org/abs/math/0408398
https://hal.archives-ouvertes.fr/hal-00013012
http://dro.dur.ac.uk/4592/
http://ui.adsabs.harvard.edu/abs/2004math......8398K/abstract
https://www.sciencedirect.com/science/article/abs/pii/S0021869305003121
https://dro.dur.ac.uk/4592/
https://www.sciencedirect.com/science/article/pii/S0021869305003121
https://hal.science/hal-00013012v1
https://hal.archives-ouvertes.fr/hal-00013012
http://dro.dur.ac.uk/4592/
http://ui.adsabs.harvard.edu/abs/2004math......8398K/abstract
https://www.sciencedirect.com/science/article/abs/pii/S0021869305003121
https://dro.dur.ac.uk/4592/
https://www.sciencedirect.com/science/article/pii/S0021869305003121
https://hal.science/hal-00013012v1
Rights:
Elsevier Non-Commercial
arXiv Non-Exclusive Distribution
arXiv Non-Exclusive Distribution
Accession Number:
edsair.doi.dedup.....35c0970cc40cd38486d3f6529cbdcbdc
Database:
OpenAIRE
Weitere Informationen
Drinfeld associator is a key tool in computing the Kontsevich integral of knots. A Drinfeld associator is a series in two non-commuting variables, satisfying highly complicated algebraic equations - hexagon and pentagon. The logarithm of a Drinfeld associator lives in the Lie algbera L generated by the symbols a,b,c modulo [a,b]=[b,c]=[c,a]. The main result is a description of compressed associators that satisfy the compressed pentagon and hexagon in the quotient L/[[L,L],[L,L]]. The key ingredient is an explicit form of Campbell-Baker-Hausdorff formula in the case when all commutators commute.
36 pages, 5 figures