AN0184787735;3on01may.25;2025Apr30.03:17;v2.2.500
Extended convergence analysis of the Scholtes-type regularization for cardinality-constrained optimization problems
We extend the convergence analysis of the Scholtes-type regularization method for cardinality-constrained optimization problems. Its behavior is clarified in the vicinity of saddle points, and not just of minimizers as it has been done in the literature before. This becomes possible by using as an intermediate step the recently introduced regularized continuous reformulation of a cardinality-constrained optimization problem. We show that the Scholtes-type regularization method is well-defined locally around a nondegenerate T-stationary point of this regularized continuous reformulation. Moreover, the nondegenerate Karush–Kuhn–Tucker points of the corresponding Scholtes-type regularization converge to a T-stationary point having the same index, i.e. its topological type persists. As consequence, we conclude that the global structure of the Scholtes-type regularization essentially coincides with that of CCOP.
Keywords: Cardinality-constrained optimization problem; Scholtes-type regularization method; Nondegenerate T-stationarity; Index; Genericity; 90C26; 90C46; Mathematical Sciences Numerical and Computational Mathematics
Introduction
In nonconvex optimization Scholtes-type regularization methods became popular since the seminal paper [[1]]. Typically, nonsmooth constraints are relaxed by means of a parameter. Then, Karush–Kuhn–Tucker points of the induced nonlinear programs need to be computed. They are shown to converge towards some suitably defined stationary points of the original optimization problem as the regularization parameter tends to zero. Scholtes-type regularization methods for mathematical programs with complementarity (MPCC), vanishing (MPVC), switching (MPSC), and orthogonality type constrains (MPOC) were examined along these lines in the literature so far, see e.g. [[1], [3]–[4]] for further details, respectively.
In this paper, we study the Scholtes-type regularization method for the class of cardinality-constrained optimization problems:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mspace width="0.333333em" /><mtext>CCOP</mtext><mspace width="0.333333em" /><mo>:</mo><mspace width="1em" /><munder><mo movablelimits="true">min</mo><mi>x</mi></munder><mspace width="0.166667em" /><mspace width="0.166667em" /><mi>f</mi><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mspace width="1em" /><mspace width="0.333333em" /><mtext>s.</mtext><mspace width="0.333333em" /><mspace width="0.166667em" /><mspace width="0.333333em" /><mtext>t.</mtext><mspace width="0.333333em" /><mspace width="1em" /><mi>h</mi><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo><mspace width="1em" /><mi>g</mi><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>≥</mo><mn>0</mn><mo>,</mo><mspace width="1em" /><msub><mfenced close="∥" open="∥"><mi>x</mi></mfenced><mn>0</mn></msub><mo>≤</mo><mi>s</mi></mrow></mtd></mtr></mtable></mrow></math>
Graph
with the feasible set given by equality, inequality, and cardinality constraints, where the so-called zero "norm" <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mfenced close="∥" open="∥"><mi>x</mi></mfenced><mn>0</mn></msub><mo>=</mo><mfenced close="|" open="|"><mfenced close="}" open="{"><mrow><mi>i</mi><mo>∈</mo><mrow><mo stretchy="false">{</mo><mn>1</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>n</mi><mo stretchy="false">}</mo></mrow><mspace width="0.277778em" /><mo stretchy="false">|</mo><mspace width="0.277778em" /></mrow><msub><mi>x</mi><mi>i</mi></msub><mo>≠</mo><mn>0</mn></mfenced></mfenced></mrow></math> is counting non-zero entries of x. Here, we assume that the objective function f, as well as the equality and inequality constraints <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>h</mi><mo>=</mo><mfenced close=")" open="("><msub><mi>h</mi><mi>p</mi></msub><mo>,</mo><mi>p</mi><mo>∈</mo><mi>P</mi></mfenced></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>g</mi><mo>=</mo><mfenced close=")" open="("><msub><mi>g</mi><mi>q</mi></msub><mo>,</mo><mi>q</mi><mo>∈</mo><mi>Q</mi></mfenced></mrow></math> are twice continuously differentiable, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>s</mi><mo>∈</mo><mo stretchy="false">{</mo><mn>1</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>n</mi><mo>-</mo><mn>1</mn><mo stretchy="false">}</mo></mrow></math> is an integer. In order to arrive at the Scholtes-type regularization, the so-called continuous reformulation of CCOP from [[5]] is helpful:
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mstyle displaystyle="true" scriptlevel="0"><mrow><munder><mo movablelimits="true">min</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></munder><mspace width="0.166667em" /><mspace width="0.166667em" /><mi>f</mi><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mspace width="1em" /><mspace width="0.333333em" /><mtext>s.</mtext><mspace width="0.333333em" /><mspace width="0.166667em" /><mspace width="0.333333em" /><mtext>t.</mtext><mspace width="0.333333em" /><mspace width="1em" /><mi>h</mi><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>=</mo></mrow></mstyle></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mn>0</mn><mo>,</mo><mspace width="1em" /><mi>g</mi><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>≥</mo><mn>0</mn><mo>,</mo><mspace width="1em" /><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mi>y</mi><mi>i</mi></msub><mo>≥</mo><mi>n</mi><mo>-</mo><mi>s</mi><mo>,</mo></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><msub><mi>x</mi><mi>i</mi></msub><msub><mi>y</mi><mi>i</mi></msub><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mn>0</mn><mo>,</mo><mspace width="1em" /><mn>0</mn><mo>≤</mo><msub><mi>y</mi><mi>i</mi></msub><mo>≤</mo><mn>1</mn><mo>,</mo><mspace width="1em" /><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>n</mi><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
As pointed out there, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> solves CCOP if and only if there exists a vector <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></math> solves (1). In order to tackle (1) numerically, [[6]] suggests to regularize the orthogonality type constraints by using the Scholtes' idea, cf. [[1]]:
2 <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mstyle displaystyle="true" scriptlevel="0"><mrow><munder><mo movablelimits="true">min</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></munder><mspace width="0.166667em" /><mspace width="0.166667em" /><mi>f</mi><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mspace width="1em" /><mspace width="0.333333em" /><mtext>s.</mtext><mspace width="0.333333em" /><mspace width="0.166667em" /><mspace width="0.333333em" /><mtext>t.</mtext><mspace width="0.333333em" /><mspace width="0.166667em" /><mi>h</mi><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>=</mo></mrow></mstyle></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mn>0</mn><mo>,</mo><mspace width="1em" /><mi>g</mi><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>≥</mo><mn>0</mn><mo>,</mo><mspace width="1em" /><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mi>y</mi><mi>i</mi></msub><mo>≥</mo><mi>n</mi><mo>-</mo><mi>s</mi><mo>,</mo></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mo>-</mo><mi>t</mi><mo>≤</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><msub><mi>x</mi><mi>i</mi></msub><msub><mi>y</mi><mi>i</mi></msub><mo>≤</mo><mi>t</mi><mo>,</mo><mspace width="1em" /><mn>0</mn><mo>≤</mo><msub><mi>y</mi><mi>i</mi></msub><mo>≤</mo><mn>1</mn><mo>,</mo><mspace width="1em" /><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>n</mi><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
where <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mo>></mo><mn>0</mn></mrow></math> . Further in [[7]], the authors prove that—under some suitable constraint qualification and second-order sufficient condition—the Scholtes-type regularization method is well-defined locally around a minimizer of (1). Moreover, the Karush–Kuhn–Tucker points of (2) converge to an S-stationary point of (1) whenever <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></math> .
Our goal is to extend the convergence analysis of the Scholtes-type regularization method beyond the case of minimizers of (1), but also for all kinds of its saddle points. By doing so, we intend to relate the indices of nondegenerate Karush–Kuhn–Tucker points of the Scholtes-type regularization with those of T-stationary points of the regularized continuous reformulation. Here, nondegeneracy refers to some tailored versions of linear independence constraint qualification, strict complementarity and second-order regularity. Assuming nondegeneracy, Karush–Kuhn–Tucker points and T-stationary points can be classified according to their quadratic and T-index, respectively. The index encodes the local structure of the optimization problem under consideration in algebraic terms and its global structure in the sense of Morse theory, see [[8]]. We note that for our purpose we need to preliminarily regularize the continuous reformulation (1). The reason is that all T-stationary points of (1)—considered as an MPOC instance—turn out to be degenerate, cf. [[4]]. To overcome this obstacle, it has been suggested in [[9]] not only to linearly perturb the objective function in (1) with respect to y-variables, but also to additionally relax the upper bounds on them. As for our main results, the Scholtes-type regularization method proves to be well-defined locally around a nondegenerate T-stationary point of the regularized continuous reformulation. Moreover, the nondegenerate Karush–Kuhn–Tucker points of its Scholtes-type regularization converge to a T-stationary point having the same index. These results allow us to relate the x-variables of the Karush–Kuhn–Tucker points of the Scholtes-type regularization to the M-stationary points of CCOP directly.
We emphasize that the study of saddle points for the Scholtes-type regularization is not only valuable from the global optimization perspective, but also from the practical point of view. Indeed, since the Scholtes-type regularization falls into the scope of nonlinear programming, we can only hope to efficiently compute its Karush–Kuhn–Tucker points. This can be done e.g. by using Newton-type methods, which—as well known—do not in general converge towards minimizers. These Karush–Kuhn–Tucker points of the Scholtes-type regularization will thus appear to be saddle points of different kinds. Their convergence to the saddle points of the regularized continuous reformulation of CCOP and of CCOP itself has then to be addressed.
The article is organized as follows. In Sect. 2 we discuss some preliminary results on CCOP and its regularized continuous reformulation. Sect. 3 is devoted to the extended convergence analysis of its Scholtes-type regularization.
Our notation is standard. The cardinality of a finite set A is denoted by <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">|</mo><mi>A</mi><mo stretchy="false">|</mo></mrow></math> . The n-dimensional Euclidean space is denoted by <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mi>n</mi></msup></math> with the coordinate vectors <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>e</mi><mi>i</mi></msub><mo>,</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>n</mi></mrow></math> . The vector consisting of ones is denoted by e. Given a twice continuously differentiable function <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>f</mi><mo>:</mo><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mi>n</mi></msup><mo stretchy="false">→</mo><mi mathvariant="double-struck">R</mi></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="normal">∇</mi><mi>f</mi></mrow></math> denotes its gradient, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>D</mi><mn>2</mn></msup><mi>f</mi></mrow></math> stands for its Hessian.
Preliminaries
We start with the notion of nondegenerate stationarity for CCOP as described in [[10]]. For that, we use the index set of active inequality constraints and the index set of vanishing x-variables, i.e.
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>=</mo><mfenced close="}" open="{"><mi>q</mi><mo>∈</mo><mi>Q</mi><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>=</mo><mn>0</mn></mfenced></mfenced><mo>,</mo><mspace width="1em" /><msub><mi>I</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>=</mo><mfenced close="}" open="{"><mi>i</mi><mo>∈</mo><mrow><mo stretchy="false">{</mo><mn>1</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>n</mi><mo stretchy="false">}</mo></mrow><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mo>=</mo><mn>0</mn></mfenced></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
Let us introduce the CCOP-tailored linear independence constraint qualification.
Definition 1
(CC-LICQ, see [[11]]) We say that a feasible point <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> of CCOP satisfies the cardinality-constrained linear independence constraint qualification (CC-LICQ) if the following gradients are linearly independent:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mi mathvariant="normal">∇</mi><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo><mspace width="0.166667em" /><mi>p</mi><mo>∈</mo><mi>P</mi><mo>,</mo><mspace width="1em" /><mi mathvariant="normal">∇</mi><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo><mspace width="0.166667em" /><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo><mspace width="1em" /><msub><mi>e</mi><mi>i</mi></msub><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msub><mi>I</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
It was shown in [[10]] that the topologically relevant stationary concept for CCOP is M-stationarity, namely in the sense of the Morse theory.
Definition 2
(M-stationarity, see [[5]]) A CCOP feasible point <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> is called M-stationary if there exist multipliers
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mover accent="true"><mrow><mi>λ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>p</mi></msub><mo>,</mo><mspace width="0.166667em" /><mi>p</mi><mo>∈</mo><mi>P</mi><mo>,</mo><mspace width="1em" /><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>q</mi></msub><mo>,</mo><mspace width="0.166667em" /><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo><mspace width="1em" /><msub><mover accent="true"><mrow><mi>γ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msub><mi>I</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
such that the following conditions hold:
3 <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mi mathvariant="normal">∇</mi><mi>f</mi><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><munder><mo movablelimits="false">∑</mo><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow></munder><msub><mover accent="true"><mrow><mi>λ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>p</mi></msub><mi mathvariant="normal">∇</mi><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></munder><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>q</mi></msub><mi mathvariant="normal">∇</mi><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msub><mi>I</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></munder><msub><mover accent="true"><mrow><mi>γ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><msub><mi>e</mi><mi>i</mi></msub><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
4 <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>q</mi></msub><mo>≥</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mn>0</mn><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mspace width="0.333333em" /><mtext>all</mtext><mspace width="0.333333em" /><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
It is convenient to define the Lagrange function, since the multipliers are unique under CC-LICQ, cf. [[6]],
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mi>L</mi><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>=</mo><mi>f</mi><mfenced close=")" open="("><mi>x</mi></mfenced><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow></munder><msub><mover accent="true"><mrow><mi>λ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>p</mi></msub><msub><mi>h</mi><mi>p</mi></msub><mfenced close=")" open="("><mi>x</mi></mfenced><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></munder><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>q</mi></msub><msub><mi>g</mi><mi>q</mi></msub><mfenced close=")" open="("><mi>x</mi></mfenced><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msub><mi>I</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></munder><msub><mover accent="true"><mrow><mi>γ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><msub><mi>x</mi><mi>i</mi></msub><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
We also use the corresponding tangent space
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi mathvariant="script">T</mi><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><mo>=</mo><mfenced close="}" open="{"><mi>ξ</mi><mo>∈</mo><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mi>n</mi></msup><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><mi>D</mi><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>p</mi><mo>∈</mo><mi>P</mi><mo>,</mo><mi>D</mi><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo><msub><mi>ξ</mi><mi>i</mi></msub><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><msub><mi>I</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mfenced></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
We now focus on the definition of nondegeneracy for M-stationary points, which was introduced in [[10]]. It is justified there by showing that all M-stationary points of CCOP are generically nondegenerate.
Definition 3
(Nondegenerate M-stationarity, see [[10]]) An M-stationary point <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> of CCOP is called nondegenerate if
- NDM1: CC-LICQ holds at <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> ,
- NDM2: <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>q</mi></msub><mo>></mo><mn>0</mn></mrow></math> for all <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math> ,
- NDM3: if <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mfenced close="∥" open="∥"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mn>0</mn></msub><mo><</mo><mi>s</mi></mrow></math> then <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mover accent="true"><mrow><mi>γ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mo>≠</mo><mn>0</mn></mrow></math> for all <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msub><mi>I</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math> ,
- NDM4: the matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>D</mi><mn>2</mn></msup><mi>L</mi><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><msub><mo>↾</mo><msub><mi mathvariant="script">T</mi><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></msub></mrow></math> is nonsingular.
For a nondegenerate M-stationary point we eventually use an additional condition:
- NDM5: <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>γ</mi><mi>i</mi></msub><mo>≠</mo><mn>0</mn></mrow></math> holds for all <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msub><mi>I</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math> .
With a nondegenerate M-stationary point <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> an M-index can be associated. The M-index captures the structure of CCOP locally around <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> and defines the type of an M-stationary point, see [[10]] for details. In particular, nondegenerate minimizers of CCOP are characterized by a vanishing M-index. If the M-index does not vanish, we get all kinds of saddle points.
Definition 4
(M-index, see [[10]]) Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> be a nondegenerate M-stationary point of CCOP. The number of negative eigenvalues of the matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>D</mi><mn>2</mn></msup><mspace width="0.166667em" /><mi>L</mi><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><msub><mo>↾</mo><msub><mi mathvariant="script">T</mi><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></msub></mrow></math> is called its quadratic index (QI). The number <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>s</mi><mo>-</mo><msub><mfenced close="∥" open="∥"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mn>0</mn></msub></mrow></math> is called the sparsity index (SI) of <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> . We define the M-index (MI) as the sum of both, i. e. <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>M</mi><mi>I</mi><mo>=</mo><mi>S</mi><mi>I</mi><mo>+</mo><mi>Q</mi><mi>I</mi></mrow></math> .
Now, we are ready to associate with CCOP the regularized continuous reformulation as suggested in [[9]]:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mstyle displaystyle="true" scriptlevel="0"><mrow><mi mathvariant="script">R</mi><mrow><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mi>ε</mi><mo stretchy="false">)</mo></mrow><mo>:</mo><mspace width="1em" /><munder><mo movablelimits="true">min</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></munder><mspace width="0.166667em" /><mspace width="0.166667em" /><mi>f</mi><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>+</mo><msup><mi>c</mi><mi>T</mi></msup><mi>y</mi><mspace width="1em" /><mspace width="0.333333em" /><mtext>s.</mtext><mspace width="0.333333em" /><mspace width="0.166667em" /><mspace width="0.333333em" /><mtext>t.</mtext><mspace width="0.333333em" /><mspace width="0.166667em" /><mi>h</mi><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>=</mo></mrow></mstyle></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mn>0</mn><mo>,</mo><mspace width="1em" /><mi>g</mi><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>≥</mo><mn>0</mn><mo>,</mo><mspace width="1em" /><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mi>y</mi><mi>i</mi></msub><mo>≥</mo><mi>n</mi><mo>-</mo><mi>s</mi><mo>,</mo><mspace width="1em" /></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><msub><mi>x</mi><mi>i</mi></msub><msub><mi>y</mi><mi>i</mi></msub><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mn>0</mn><mo>,</mo><mspace width="1em" /><mn>0</mn><mo>≤</mo><msub><mi>y</mi><mi>i</mi></msub><mo>≤</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>,</mo><mspace width="1em" /><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>n</mi><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
where the components of <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>c</mi><mo>∈</mo><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mi>n</mi></msup></mrow></math> are positive and pairwise different, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>0</mn><mo><</mo><mi>ε</mi><mo>≤</mo><mfrac><mn>1</mn><mrow><mi>n</mi><mo>-</mo><mi>s</mi></mrow></mfrac></mrow></math> . Given a feasible point <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> , we define the index sets which correspond to the orthogonality type constraints <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>x</mi><mi>i</mi></msub><msub><mi>y</mi><mi>i</mi></msub><mo>=</mo><mn>0</mn></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>y</mi><mi>i</mi></msub><mo>≥</mo><mn>0</mn></mrow></math> :
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mfenced close="}" open="{"><mi>i</mi><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mo>=</mo><mn>0</mn><mo>,</mo><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mo>></mo><mn>0</mn></mfenced></mfenced><mo>,</mo><mspace width="1em" /><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>=</mo><mfenced close="}" open="{"><mi>i</mi><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mo>≠</mo><mn>0</mn><mo>,</mo><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mo>=</mo><mn>0</mn></mfenced></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mfenced close="}" open="{"><mi>i</mi><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mo>=</mo><mn>0</mn><mo>,</mo><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mo>=</mo><mn>0</mn></mfenced></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
The index sets of the active inequality constraints will be denoted by
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>=</mo><mfenced close="}" open="{"><mi>q</mi><mo>∈</mo><mi>Q</mi><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>=</mo><mn>0</mn></mfenced></mfenced><mo>,</mo><mspace width="1em" /><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>=</mo><mfenced close="}" open="{"><mi>i</mi><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mo>=</mo><mn>1</mn><mo>+</mo><mi>ε</mi></mfenced></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
The regularized continuous reformulation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> is a special case of MPOC. The latter class was examined in [[4]], where the MPOC-tailored linear independence constraint qualification and the notion of (nondegenerate) T-stationary points with the corresponding T-index were introduced. It has been shown there that T-stationarity is the topologically relevant stationarity notion for MPOC, again in the sense of Morse theory. We note that the alternative concept of S-stationarity has been defined for the original continuous reformulation (1). It has been shown in [[4]] that S-stationarity implies T-stationarity for (1), but not vice versa. These both facts motivated us in [[9]] to apply T-, rather than S-stationarity to the regularization <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> .
Definition 5
(MPOC-LICQ, [[9]]) We say that a feasible point <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> satisfies the MPOC-tailored linear independence constraint qualification (MPOC-LICQ) if the following vectors are linearly independent:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo><mspace width="0.166667em" /><mi>p</mi><mo>∈</mo><mi>P</mi><mo>,</mo><mspace width="1em" /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo><mspace width="0.166667em" /><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mrow /></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo><mspace width="1em" /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mi>e</mi></mrow></mtd></mtr></mtable></mrow></mfenced><mspace width="0.333333em" /><mtext>if</mtext><mspace width="0.333333em" /><munderover><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mo>=</mo><mi>n</mi><mo>-</mo><mi>s</mi><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mrow /></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><msub><mi>e</mi><mi>i</mi></msub></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>∪</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo><mspace width="1em" /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>∪</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
Definition 6
(T-stationary point, [[9]]) A feasible point <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> is called T-stationary if there exist multipliers
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mrow><mrow /><msub><mover accent="true"><mrow><mi>λ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>p</mi></msub><mo>,</mo><mspace width="0.166667em" /><mi>p</mi><mo>∈</mo><mi>P</mi><mo>,</mo><mspace width="1em" /><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msub><mo>,</mo><mspace width="0.166667em" /><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo><mspace width="1em" /><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo><mspace width="1em" /><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mrow /></mrow></mtd><mtd columnalign="left"><mrow><mrow /><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo><mspace width="1em" /><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo><mspace width="1em" /><msub><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>,</mo><msub><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
such that the following conditions hold:
5 <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><mi>f</mi><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mi>c</mi></mrow></mtd></mtr></mtable></mrow></mfenced><mo>=</mo></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><munder><mo movablelimits="false">∑</mo><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow></munder><msub><mover accent="true"><mrow><mi>λ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>p</mi></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></munder><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></munder><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>+</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mi>e</mi></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><msub><mi>e</mi><mi>i</mi></msub></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><mfenced close=")" open="("><msub><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><msub><mi>e</mi><mi>i</mi></msub></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><msub><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced></mfenced><mo>,</mo></mrow></mstyle></mtd></mtr></mtable></mrow></math>
Graph
6 <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msub><mo>≥</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mn>0</mn><mo>,</mo><mspace width="0.166667em" /><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo><mspace width="1em" /><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>≥</mo><mn>0</mn><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo><mspace width="1em" /></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub><mo>≥</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mn>0</mn><mo>,</mo><mspace width="0.166667em" /><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub><mfenced close=")" open="("><munderover><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mo>-</mo><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>-</mo><mi>s</mi><mo stretchy="false">)</mo></mrow></mfenced><mo>=</mo><mn>0</mn><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
7 <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mn>0</mn><mspace width="0.333333em" /><mtext>or</mtext><mspace width="0.333333em" /><msub><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>≤</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
We define the appropriate Lagrange function:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msup><mi>L</mi><mi mathvariant="script">R</mi></msup><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo>=</mo></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mi>f</mi><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>+</mo><msup><mi>c</mi><mi>T</mi></msup><mi>y</mi><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow></munder><msub><mover accent="true"><mrow><mi>λ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>p</mi></msub><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></munder><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msub><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mrow /></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></munder><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mfenced close=")" open="("><msub><mi>y</mi><mi>i</mi></msub><mo>-</mo><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo stretchy="false">)</mo></mrow></mfenced><mo>-</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub><mfenced close=")" open="("><munderover><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mi>y</mi><mi>i</mi></msub><mo>-</mo><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>-</mo><mi>s</mi><mo stretchy="false">)</mo></mrow></mfenced></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mrow /></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><msub><mi>x</mi><mi>i</mi></msub><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><msub><mi>y</mi><mi>i</mi></msub><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><mfenced close=")" open="("><msub><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><msub><mi>x</mi><mi>i</mi></msub><mo>+</mo><msub><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><msub><mi>y</mi><mi>i</mi></msub></mfenced><mo>.</mo></mrow></mstyle></mtd></mtr></mtable></mrow></math>
Graph
Moreover, we set for the corresponding tangent space
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mi mathvariant="script">R</mi></msubsup><mo>=</mo><mfenced close="}" open="{"><mi>ξ</mi><mo>∈</mo><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><mrow><mtable><mtr><mtd columnalign="left"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi>D</mi><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>p</mi><mo>∈</mo><mi>P</mi><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi>D</mi><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><mi>e</mi></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mspace width="0.333333em" /><mtext>if</mtext><mspace width="0.333333em" /><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mo>=</mo><mi>n</mi><mo>-</mo><mi>s</mi><mo>,</mo></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msub><mi>e</mi><mi>i</mi></msub><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>∪</mo><msub><mi>a</mi><mn>01</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>∪</mo><msub><mi>a</mi><mn>10</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr></mtable></mrow></mfenced></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
Definition 7
(Nondegenerate T-stationary point, [[9]]) A T-stationary point <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> with multipliers <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>λ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> is called nondegenerate if
- NDT1: MPOC-LICQ holds at <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> ,
- NDT2: <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msub><mo>></mo><mn>0</mn></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>></mo><mn>0</mn></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mfenced close=")" open="("><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math> , and <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub><mo>></mo><mn>0</mn></mrow></math> if <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mo>=</mo><mi>n</mi><mo>-</mo><mi>s</mi></mrow></math> ,
- NDT3: <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>≠</mo><mn>0</mn></mrow></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mo><</mo><mn>0</mn></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math> ,
- NDT4: the matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>D</mi><mn>2</mn></msup><mspace width="0.166667em" /><msup><mi>L</mi><mi mathvariant="script">R</mi></msup><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><msub><mo>↾</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mi mathvariant="script">R</mi></msubsup></msub></mrow></math> is nonsingular.
For a nondegenerate T-stationary point we eventually use additional conditions:
- NDT5: if <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>≠</mo><mi mathvariant="normal">∅</mi></mrow></math> , then <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>≠</mo><mn>0</mn></mrow></math> for all <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math> .
- NDT6: <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>≠</mo><mn>0</mn></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math> .
Definition 8
(T-index, [[9]]) Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> be a nondegenerate T-stationary point of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> with unique multipliers <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><mover accent="true"><mrow><mi>λ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></math> . The number of negative eigenvalues of the matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>D</mi><mn>2</mn></msup><mspace width="0.166667em" /><msup><mi>L</mi><mi mathvariant="script">R</mi></msup><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><msub><mo>↾</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mi mathvariant="script">R</mi></msubsup></msub></mrow></math> is called its quadratic index (QI). The cardinality of <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math> is called the biactive index (BI) of <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> . We define the T-index (TI) as the sum of both, i.e. <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>T</mi><mi>I</mi><mo>=</mo><mi>Q</mi><mi>I</mi><mo>+</mo><mi>B</mi><mi>I</mi></mrow></math> .
The nondegeneracy conditions NDT1-NDT4 are tailored for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> . Note that NDT2 corresponds to the strict complementarity and NDT4 to the second-order regularity as they are typically defined in the context of nonlinear programming. NDT1 substitutes the usual linear independence constraint qualification. NDT3 is new and says that the multipliers corresponding to biactive orthogonality type constraints must not vanish. With a nondegenerate T-stationary point <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> a T-index can be associated. The T-index captures the structure of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> locally around <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> and defines the type of a T-stationary point, see [[9]] for details. In particular, nondegenerate minimizers of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> are characterized by a vanishing T-index. If the T-index does not vanish, we get all kinds of saddle points.
Next Lemma 1 provides insights into the structure of auxiliary y-variables corresponding to a T-stationary point of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> .
Lemma 1
(Auxiliary y-variables in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> , [[9]]) Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> be a T-stationary point of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> , then it holds:
- the summation inequality constraint is active, i.e. <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mo>=</mo><mi>n</mi><mo>-</mo><mi>s</mi></mrow></math> ,
- the index set <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>a</mi><mn>01</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math> consists of exactly <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>n</mi><mo>-</mo><mi>s</mi></mrow></math> elements,
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>n</mi><mo>-</mo><mi>s</mi><mo>-</mo><mn>1</mn></mrow></math> components of <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> are equal to <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn><mo>+</mo><mi>ε</mi></mrow></math> , one component is equal to <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn><mo>-</mo><mo stretchy="false">(</mo><mi>n</mi><mo>-</mo><mi>s</mi><mo>-</mo><mn>1</mn><mo stretchy="false">)</mo><mi>ε</mi></mrow></math> , and s remaining components vanish.
We note that nondegenerate M-stationary points of CCOP naturally correspond to nondegenerate T-stationary points of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> and vice versa. As shown in [[9]], also their M- and T-indices coincide. Thus, the regularized continuous reformulation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> can be likewise studied instead of (1).
Theorem 1
(Stationarity of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> and CCOP, [[9]])
- If <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> is an M-stationary point of CCOP, then there exist at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi>n</mi><mo>-</mo><msub><mfenced close="∥" open="∥"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mn>0</mn></msub><mo>-</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mi>n</mi><mo>-</mo><mi>s</mi><mo>-</mo><mn>1</mn></mrow></mtd></mtr></mtable></mrow></mfenced></math> choices of <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> is a T-stationary point of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> . If <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> is additionally nondegenerate with M-index m, then all corresponding T-stationary points <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> are also nondegenerate with T-index m. Moreover, their number is exactly <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi>n</mi><mo>-</mo><msub><mfenced close="∥" open="∥"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mn>0</mn></msub><mo>-</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mi>n</mi><mo>-</mo><mi>s</mi><mo>-</mo><mn>1</mn></mrow></mtd></mtr></mtable></mrow></mfenced></math> , and NDT5 holds at any of them.
- If <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> is a T-stationary point of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> , then <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> is an M-stationary point of CCOP. If <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> is additionally nondegenerate with T-index m and satisfies NDT5, then <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> is also nondegenerate with M-index m.
Scholtes-type regularization
Let us now regularize the orthogonality type constraints in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> by using the Scholtes' idea, cf. [[1]]:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mstyle displaystyle="true" scriptlevel="0"><mrow><mi mathvariant="script">S</mi><mrow><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><mo>:</mo><mspace width="1em" /><munder><mo movablelimits="true">min</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></munder><mspace width="0.166667em" /><mspace width="0.166667em" /><mi>f</mi><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>+</mo><msup><mi>c</mi><mi>T</mi></msup><mi>y</mi><mspace width="1em" /><mspace width="0.333333em" /><mtext>s.</mtext><mspace width="0.333333em" /><mspace width="0.166667em" /><mspace width="0.333333em" /><mtext>t.</mtext><mspace width="0.333333em" /><mspace width="0.166667em" /><mi>h</mi><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>=</mo></mrow></mstyle></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mn>0</mn><mo>,</mo><mspace width="1em" /><mi>g</mi><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>≥</mo><mn>0</mn><mo>,</mo><mspace width="1em" /><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mi>y</mi><mi>i</mi></msub><mo>≥</mo><mi>n</mi><mo>-</mo><mi>s</mi><mo>,</mo></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mo>-</mo><mi>t</mi><mo>≤</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><msub><mi>x</mi><mi>i</mi></msub><msub><mi>y</mi><mi>i</mi></msub><mo>≤</mo><mi>t</mi><mo>,</mo><mspace width="1em" /><mn>0</mn><mo>≤</mo><msub><mi>y</mi><mi>i</mi></msub><mo>≤</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>,</mo><mspace width="1em" /><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>n</mi><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
where <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mo>></mo><mn>0</mn></mrow></math> . Note that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> from above falls into the scope of nonlinear programming. The notation for the sets <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="script">E</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></math> , which were used for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> , will be used here again. Furthermore, we define for a feasible point <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><mi>x</mi><mo>,</mo><mi>y</mi></mfenced></math> of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> the index set of vanishing y-components as well as the index sets of active relaxed orthogonality type constraints:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mi mathvariant="script">N</mi><mrow><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo>=</mo><mfenced close="}" open="{"><mi>i</mi><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mi>y</mi><mi>i</mi></msub><mo>=</mo><mn>0</mn></mfenced></mfenced><mo>,</mo><mspace width="1em" /><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mfenced close=")" open="("><mi>x</mi><mo>,</mo><mi>y</mi></mfenced><mo>=</mo><mfenced close="}" open="{"><mi>i</mi><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mi>x</mi><mi>i</mi></msub><msub><mi>y</mi><mi>i</mi></msub><mo>=</mo><mo>-</mo><mi>t</mi></mfenced></mfenced><mo>,</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mfenced close=")" open="("><mi>x</mi><mo>,</mo><mi>y</mi></mfenced><mo>=</mo><mfenced close="}" open="{"><mi>i</mi><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mi>x</mi><mi>i</mi></msub><msub><mi>y</mi><mi>i</mi></msub><mo>=</mo><mi>t</mi></mfenced></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
We also eventually use the following index sets:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mi mathvariant="script">H</mi><mfenced close=")" open="("><mi>x</mi><mo>,</mo><mi>y</mi></mfenced><mo>=</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mfenced close=")" open="("><mi>x</mi><mo>,</mo><mi>y</mi></mfenced><mo>∪</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mfenced close=")" open="("><mi>x</mi><mo>,</mo><mi>y</mi></mfenced><mo>,</mo><mspace width="1em" /><mi mathvariant="script">O</mi><mfenced close=")" open="("><mi>x</mi><mo>,</mo><mi>y</mi></mfenced><mo>=</mo><msup><mfenced close=")" open="("><mi mathvariant="script">E</mi><mfenced close=")" open="("><mi>y</mi></mfenced><mo>∪</mo><mi mathvariant="script">N</mi><mfenced close=")" open="("><mi>y</mi></mfenced><mo>∪</mo><mi mathvariant="script">H</mi><mfenced close=")" open="("><mi>x</mi><mo>,</mo><mi>y</mi></mfenced></mfenced><mi>c</mi></msup><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
For the sake of completeness we state the linear independence constraint qualification for the nonlinear programming problem <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> .
Definition 9
(LICQ) We say that a feasible point (x, y) of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> satisfies the linear independence constraint qualification (LICQ) if the following vectors are linearly independent:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo><mspace width="0.166667em" /><mi>p</mi><mo>∈</mo><mi>P</mi><mo>,</mo><mspace width="1em" /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo><mspace width="0.166667em" /><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>,</mo><mspace width="1em" /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mi>e</mi></mrow></mtd></mtr></mtable></mrow></mfenced><mspace width="0.333333em" /><mtext>if</mtext><mspace width="0.333333em" /><munderover><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mi>y</mi><mi>i</mi></msub><mo>=</mo><mi>n</mi><mo>-</mo><mi>s</mi><mo>,</mo><mspace width="1em" /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msub><mi>y</mi><mi>i</mi></msub><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>x</mi><mi>i</mi></msub><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><mi mathvariant="script">H</mi><mfenced close=")" open="("><mi>x</mi><mo>,</mo><mi>y</mi></mfenced><mo>,</mo><mspace width="1em" /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><mi mathvariant="script">N</mi><mrow><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
Let us relate MPOC-LICQ for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> with LICQ for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> .
Theorem 2
(MPOC-LICQ vs. LICQ) Let a feasible point <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> fulfill MPOC-LICQ. Then, LICQ holds at all feasible points (x, y) of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> for all sufficiently small t, whenever they are sufficiently close to <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> .
Proof
Let us contrarily assume that there exists a sequence of feasible points <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></math> of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> violating LICQ, which converges to <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></math> . Additionally, suppose that along some subsequence, which we index by t again, it holds <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup><mo>=</mo><mi>n</mi><mo>-</mo><mi>s</mi></mrow></math> . Then, we have <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mo>=</mo><mi>n</mi><mo>-</mo><mi>s</mi></mrow></math> . Due to MPOC-LICQ at <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></math> as well as continuity of <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="normal">∇</mi><mi>h</mi></mrow></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="normal">∇</mi><mi>g</mi></mrow></math> , we have that for t sufficiently small all multipliers <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mrow><mover accent="true"><mrow><mi>λ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msup></mrow></math> in the following equation vanish:
8 <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>=</mo></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><munder><mo movablelimits="false">∑</mo><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow></munder><msubsup><mrow><mover accent="true"><mrow><mi>λ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>p</mi><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><msub><mi>h</mi><mi>p</mi></msub><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></munder><msubsup><mrow><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><msub><mi>g</mi><mi>q</mi></msub><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></munder><msubsup><mrow><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>+</mo><msubsup><mrow><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mn>3</mn><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mi>e</mi></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msubsup><mrow><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msubsup><mi>y</mi><mrow><mi>i</mi></mrow><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msubsup><mi>x</mi><mrow><mi>i</mi></mrow><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msubsup><mrow><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msubsup><mi>y</mi><mrow><mi>i</mi></mrow><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msubsup><mi>x</mi><mrow><mi>i</mi></mrow><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><mfenced close=")" open="("><msubsup><mrow><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><msub><mi>e</mi><mi>i</mi></msub></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><msubsup><mrow><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced></mfenced><mo>.</mo></mrow></mstyle></mtd></mtr></mtable></mrow></math>
Graph
Moreover, due to the violation of LICQ at <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></math> , there exist multipliers <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>λ</mi><mi>t</mi></msup><mo>,</mo><msup><mi>μ</mi><mi>t</mi></msup><mo>,</mo><msup><mi>η</mi><mi>t</mi></msup><mo>,</mo><msup><mi>ν</mi><mi>t</mi></msup></mrow></math> , not all vanishing, with
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>=</mo></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><munder><mo movablelimits="false">∑</mo><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow></munder><msubsup><mi>λ</mi><mi>p</mi><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow></mrow></munder><msubsup><mi>μ</mi><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mo stretchy="false">(</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow></munder><msubsup><mi>μ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>+</mo><msubsup><mi>μ</mi><mn>3</mn><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mi>e</mi></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">H</mi><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow></munder><msubsup><mi>η</mi><mi>i</mi><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">N</mi><mo stretchy="false">(</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow></munder><msubsup><mi>ν</mi><mi>i</mi><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>.</mo></mrow></mstyle></mtd></mtr></mtable></mrow></math>
Graph
For t sufficiently small we have <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced><mo>⊂</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="script">E</mi><mfenced close=")" open="("><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>⊂</mo><mi mathvariant="script">E</mi><mfenced close=")" open="("><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math> . In addition, it holds <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="script">H</mi><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>⊂</mo><msub><mi>a</mi><mn>01</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>∪</mo><msub><mi>a</mi><mn>10</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>∪</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="script">N</mi><mfenced close=")" open="("><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>⊂</mo><msub><mi>a</mi><mn>10</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>∪</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math> . By setting some <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi></math> -multipliers to be zero if needed, we equivalently obtain:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>=</mo></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><munder><mo movablelimits="false">∑</mo><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow></munder><msubsup><mi>λ</mi><mi>p</mi><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></munder><msubsup><mi>μ</mi><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></munder><msubsup><mi>μ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>+</mo><msubsup><mi>μ</mi><mn>3</mn><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mi>e</mi></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">H</mi><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>∩</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msubsup><mi>η</mi><mi>i</mi><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msubsup><mi>y</mi><mrow><mi>i</mi></mrow><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msubsup><mi>x</mi><mrow><mi>i</mi></mrow><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">H</mi><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>∩</mo><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msubsup><mi>η</mi><mi>i</mi><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msubsup><mi>y</mi><mrow><mi>i</mi></mrow><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msubsup><mi>x</mi><mrow><mi>i</mi></mrow><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">H</mi><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>∩</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msubsup><mi>η</mi><mi>i</mi><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">N</mi><mrow><mo stretchy="false">(</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>∩</mo><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msubsup><mi>ν</mi><mi>i</mi><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">N</mi><mrow><mo stretchy="false">(</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>∩</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msubsup><mi>ν</mi><mi>i</mi><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>.</mo></mrow></mstyle></mtd></mtr></mtable></mrow></math>
Graph
This, however, implies that not all multipliers in the following equation vanish:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>=</mo></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><munder><mo movablelimits="false">∑</mo><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow></munder><msubsup><mrow><mover accent="true"><mi>λ</mi><mo stretchy="false">^</mo></mover></mrow><mi>p</mi><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></munder><msubsup><mrow><mover accent="true"><mi>μ</mi><mo stretchy="false">^</mo></mover></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></munder><msubsup><mrow><mover accent="true"><mi>μ</mi><mo stretchy="false">^</mo></mover></mrow><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>+</mo><msubsup><mrow><mover accent="true"><mi>μ</mi><mo stretchy="false">^</mo></mover></mrow><mn>3</mn><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mi>e</mi></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">H</mi><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>∩</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msubsup><mrow><mover accent="true"><mi>η</mi><mo stretchy="false">^</mo></mover></mrow><mi>i</mi><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msubsup><mi>y</mi><mrow><mi>i</mi></mrow><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msubsup><mi>x</mi><mrow><mi>i</mi></mrow><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">H</mi><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>∩</mo><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msubsup><mrow><mover accent="true"><mi>η</mi><mo stretchy="false">^</mo></mover></mrow><mi>i</mi><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msubsup><mi>y</mi><mrow><mi>i</mi></mrow><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msubsup><mi>x</mi><mrow><mi>i</mi></mrow><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">H</mi><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>∩</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msubsup><mrow><mover accent="true"><mi>η</mi><mo stretchy="false">^</mo></mover></mrow><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><msub><mi>e</mi><mi>i</mi></msub></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">H</mi><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>∩</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msubsup><mrow><mover accent="true"><mi>η</mi><mo stretchy="false">^</mo></mover></mrow><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">N</mi><mrow><mo stretchy="false">(</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>∩</mo><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msubsup><mrow><mover accent="true"><mi>ν</mi><mo stretchy="false">^</mo></mover></mrow><mi>i</mi><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msubsup><mi>y</mi><mrow><mi>i</mi></mrow><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msubsup><mi>x</mi><mrow><mi>i</mi></mrow><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">N</mi><mrow><mo stretchy="false">(</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>∩</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msubsup><mrow><mover accent="true"><mi>ν</mi><mo stretchy="false">^</mo></mover></mrow><mi>i</mi><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>.</mo></mrow></mstyle></mtd></mtr></mtable></mrow></math>
Graph
A contradiction to (8) follows by taking into account that <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="script">H</mi><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>∩</mo><mi mathvariant="script">N</mi><mrow><mo stretchy="false">(</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>=</mo><mi mathvariant="normal">∅</mi></mrow></math> . If instead we suppose that there is no subsequence with <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><munderover><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup><mo>=</mo><mi>n</mi><mo>-</mo><mi>s</mi></mrow></math> , then we can consider a subsequence with <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup><mo>></mo><mi>n</mi><mo>-</mo><mi>s</mi></mrow></math> . By following a similar argumentation, we produce a contradiction to (8) again. <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>□</mo></math>
Next, we give the definitions of a (nondegenerate) Karush–Kuhn–Tucker point of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> and of its quadratic index as it is meanwhile standard in nonlinear programming, see e.g. [[8]].
Definition 10
(Karush–Kuhn–Tucker point) A feasible point (x, y) of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> is called Kurush–Kuhn–Tucker point if there exist multipliers
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>λ</mi><mi>p</mi></msub><mo>,</mo><mspace width="0.166667em" /><mi>p</mi><mo>∈</mo><mi>P</mi><mo>,</mo><mspace width="1em" /><msub><mi>μ</mi><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msub><mo>,</mo><mspace width="0.166667em" /><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>,</mo><mspace width="1em" /><msub><mi>μ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo>,</mo><mspace width="1em" /><msub><mi>μ</mi><mn>3</mn></msub><mo>,</mo><mspace width="1em" /><msubsup><mi>η</mi><mi>i</mi><mo>≥</mo></msubsup><mo>,</mo><msubsup><mi>η</mi><mi>i</mi><mo>≤</mo></msubsup><mo>,</mo><msub><mi>ν</mi><mi>i</mi></msub><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><mfenced close="}" open="{"><mn>1</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>n</mi></mfenced><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
such that the following conditions hold:
9 <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mi>c</mi></mrow></mtd></mtr></mtable></mrow></mfenced><mo>=</mo></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><munder><mo movablelimits="false">∑</mo><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow></munder><msub><mi>λ</mi><mi>p</mi></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></munder><msub><mi>μ</mi><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mrow><mrow /><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></munder><msub><mi>μ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><msub><mi>μ</mi><mn>3</mn></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mi>e</mi></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></mrow></munder><msubsup><mi>η</mi><mi>i</mi><mo>≥</mo></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msub><mi>y</mi><mi>i</mi></msub><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>x</mi><mi>i</mi></msub><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></mrow></munder><msubsup><mi>η</mi><mi>i</mi><mo>≤</mo></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msub><mi>y</mi><mi>i</mi></msub><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>x</mi><mi>i</mi></msub><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">N</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></munder><msub><mi>ν</mi><mi>i</mi></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo></mrow></mstyle></mtd></mtr></mtable></mrow></math>
Graph
10 <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>μ</mi><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msub><mo>≥</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mn>0</mn><mo>,</mo><mspace width="0.166667em" /><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><mi>x</mi></mfenced><mo>,</mo><mspace width="1em" /><msub><mi>μ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>≥</mo><mn>0</mn><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo>,</mo><mspace width="1em" /></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><msub><mi>μ</mi><mn>3</mn></msub><mo>≥</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mn>0</mn><mo>,</mo><msub><mi>μ</mi><mn>3</mn></msub><mfenced close=")" open="("><munderover><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mi>y</mi><mi>i</mi></msub><mo>-</mo><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>-</mo><mi>s</mi><mo stretchy="false">)</mo></mrow></mfenced><mo>=</mo><mn>0</mn><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
11 <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msubsup><mi>η</mi><mi>i</mi><mo>≥</mo></msubsup><mo>≥</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mn>0</mn><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo>,</mo><mspace width="1em" /><msubsup><mi>η</mi><mi>i</mi><mo>≤</mo></msubsup><mo>≥</mo><mn>0</mn><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo>,</mo><mspace width="1em" /><msub><mi>ν</mi><mi>i</mi></msub><mo>≥</mo><mn>0</mn><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><mi mathvariant="script">N</mi><mrow><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo>.</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd></mtr></mtable></mrow></math>
Graph
We again define the Lagrange function as
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo>=</mo></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mi>f</mi><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>+</mo><msup><mi>c</mi><mi>T</mi></msup><mi>y</mi><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow></munder><msub><mi>λ</mi><mi>p</mi></msub><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></munder><msub><mi>μ</mi><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msub><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mrow /></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></munder><msub><mi>μ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mfenced close=")" open="("><msub><mi>y</mi><mi>i</mi></msub><mo>-</mo><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo stretchy="false">)</mo></mrow></mfenced><mo>-</mo><msub><mi>μ</mi><mn>3</mn></msub><mfenced close=")" open="("><munderover><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mi>y</mi><mi>i</mi></msub><mo>-</mo><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>-</mo><mi>s</mi><mo stretchy="false">)</mo></mrow></mfenced></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mrow /></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></mrow></munder><msubsup><mi>η</mi><mi>i</mi><mo>≥</mo></msubsup><mfenced close=")" open="("><msub><mi>x</mi><mi>i</mi></msub><msub><mi>y</mi><mi>i</mi></msub><mo>+</mo><mi>t</mi></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></mrow></munder><msubsup><mi>η</mi><mi>i</mi><mo>≤</mo></msubsup><mfenced close=")" open="("><msub><mi>x</mi><mi>i</mi></msub><msub><mi>y</mi><mi>i</mi></msub><mo>-</mo><mi>t</mi></mfenced><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">N</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></munder><msub><mi>ν</mi><mi>i</mi></msub><msub><mi>y</mi><mi>i</mi></msub><mo>.</mo></mrow></mstyle></mtd></mtr></mtable></mrow></math>
Graph
The tangent space is given by
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mi mathvariant="script">S</mi></msubsup><mo>=</mo><mfenced close="}" open="{"><mi>ξ</mi><mo>∈</mo><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><mrow><mtable><mtr><mtd columnalign="left"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi>D</mi><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>p</mi><mo>∈</mo><mi>P</mi><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi>D</mi><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><mi>e</mi></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mspace width="0.333333em" /><mtext>if</mtext><mspace width="0.333333em" /><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mi>y</mi><mi>i</mi></msub><mo>=</mo><mi>n</mi><mo>-</mo><mi>s</mi><mo>,</mo></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msub><mi>y</mi><mi>i</mi></msub><msub><mi>e</mi><mi>i</mi></msub><mo>,</mo><msub><mi>x</mi><mi>i</mi></msub><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><mi mathvariant="script">H</mi><mfenced close=")" open="("><mi>x</mi><mo>,</mo><mi>y</mi></mfenced><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><mi mathvariant="script">N</mi><mrow><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr></mtable></mrow></mfenced></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
Definition 11
(Nondegenerate Karush–Kuhn–Tucker point) A Karush–Kuhn–Tucker point (x, y) of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> with multipliers <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mi>λ</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>η</mi><mo>,</mo><mi>ν</mi><mo stretchy="false">)</mo></mrow></math> is called nondegenerate if
- ND1: LICQ holds at (x, y),
- ND2: <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>μ</mi><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msub><mo>></mo><mn>0</mn></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><mi>x</mi></mfenced></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>μ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>></mo><mn>0</mn></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mfenced close=")" open="("><mi>y</mi></mfenced></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>η</mi><mi>i</mi><mo>≥</mo></msubsup><mo>></mo><mn>0</mn></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>η</mi><mi>i</mi><mo>≤</mo></msubsup><mo>></mo><mn>0</mn></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>ν</mi><mi>i</mi></msub><mo>></mo><mn>0</mn></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">N</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></math> , and <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>μ</mi><mn>3</mn></msub><mo>></mo><mn>0</mn></mrow></math> if <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mi>y</mi><mi>i</mi></msub><mo>=</mo><mi>n</mi><mo>-</mo><mi>s</mi></mrow></math> ,
- ND3: the matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>D</mi><mn>2</mn></msup><mspace width="0.166667em" /><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><msub><mo>↾</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mi mathvariant="script">S</mi></msubsup></msub></mrow></math> is nonsingular.
Definition 12
(Quadratic index) Let (x, y) be a Karush–Kuhn–Tucker point of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> with unique multipliers <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mi>λ</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>η</mi><mo>,</mo><mi>ν</mi><mo stretchy="false">)</mo></mrow></math> . The number of negative eigenvalues of the matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>D</mi><mn>2</mn></msup><mspace width="0.166667em" /><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><msub><mo>↾</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mi mathvariant="script">S</mi></msubsup></msub></mrow></math> is called its quadratic index (QI).
Note that ND1-ND3 are usual assumptions in nonlinear programming. ND1 refers to the linear independence constraint qualification, ND2 means the strict complementarity, and ND3 describes the second-order regularity. For the index of a nondegenerate Karush–Kuhn–Tucker point just the quadratic part is essential.
Lemma 2 examines the structure of y-components of a Karush–Kuhn–Tucker point of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> .
Lemma 2
(Auxiliary y-variables in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> ) Let (x, y) be a Karush–Kuhn–Tucker point of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> . Then, it holds:
- the summation inequality constraint is active, i.e. <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mi>y</mi><mi>i</mi></msub><mo>=</mo><mi>n</mi><mo>-</mo><mi>s</mi></mrow></math> ,
- the index set <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="script">E</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo><mo>∪</mo><mi mathvariant="script">H</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></math> consists of at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>n</mi><mo>-</mo><mi>s</mi><mo>-</mo><mn>1</mn></mrow></math> elements, and the index set <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="script">N</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></math> consists of at most s elements. Additionally, there is at most one index, that does not belong to any of these sets, i.e. <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mfenced close="|" open="|"><mi mathvariant="script">O</mi><mfenced close=")" open="("><mi>x</mi><mo>,</mo><mi>y</mi></mfenced></mfenced><mo>≤</mo><mn>1</mn></mrow></math> .
Proof
- Let (x, y) be a Karush–Kuhn–Tucker point of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mi>y</mi><mi>i</mi></msub><mo>></mo><mi>n</mi><mo>-</mo><mi>s</mi></mrow></math> . Then, there exist multipliers <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mi>λ</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>η</mi><mo>,</mo><mi>ν</mi><mo stretchy="false">)</mo></mrow></math> , such that (9)–(11) are fulfilled. Since <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>μ</mi><mn>3</mn></msub><mo>=</mo><mn>0</mn></mrow></math> , we have that the <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mi>i</mi><mo stretchy="false">)</mo></mrow></math> -th row of (9) reads as
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>c</mi><mi>i</mi></msub><mo>=</mo><mfenced open="{"><mrow><mtable><mtr><mtd columnalign="left"><mrow><mo>-</mo><msub><mi>μ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>,</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo><mo stretchy="true">\</mo><mi mathvariant="script">H</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mo>-</mo><msub><mi>μ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>+</mo><msubsup><mi>η</mi><mi>i</mi><mo>≥</mo></msubsup><msub><mi>x</mi><mi>i</mi></msub><mo>,</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo>∩</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mo>-</mo><msub><mi>μ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>-</mo><msubsup><mi>η</mi><mi>i</mi><mo>≤</mo></msubsup><msub><mi>x</mi><mi>i</mi></msub><mo>,</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo>∩</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><msubsup><mi>η</mi><mi>i</mi><mo>≥</mo></msubsup><msub><mi>x</mi><mi>i</mi></msub><mo>,</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mrow><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo stretchy="true">\</mo><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mo>-</mo><msubsup><mi>η</mi><mi>i</mi><mo>≤</mo></msubsup><msub><mi>x</mi><mi>i</mi></msub><mo>,</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mrow><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo stretchy="true">\</mo><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><msub><mi>ν</mi><mi>i</mi></msub><mo>,</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mi>i</mi><mo>∈</mo><mi mathvariant="script">N</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mn>0</mn><mo>,</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>else</mtext><mspace width="0.333333em" /><mo>.</mo></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mtd></mtr></mtable></mrow></math>
Graph
- Due to (10), (11), and <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>c</mi><mo>></mo><mn>0</mn></mrow></math> , it must hold that <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">N</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></math> for all <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><mfenced close="}" open="{"><mn>1</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>n</mi></mfenced></mrow></math> . This, however, contradicts <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mi>y</mi><mi>i</mi></msub><mo>></mo><mi>n</mi><mo>-</mo><mi>s</mi></mrow></math> .
- As in the proof of statement a), we conclude that <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>μ</mi><mn>3</mn></msub><mo>></mo><mn>0</mn></mrow></math> for a Karush–Kuhn–Tucker point (x, y) of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> . Hence, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mi>i</mi><mo stretchy="false">)</mo></mrow></math> -th row now reads as
- 12 <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>c</mi><mi>i</mi></msub><mo>=</mo><mfenced open="{"><mrow><mtable><mtr><mtd columnalign="left"><mrow><mo>-</mo><msub><mi>μ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>+</mo><msub><mi>μ</mi><mn>3</mn></msub><mo>,</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo><mo stretchy="true">\</mo><mi mathvariant="script">H</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mo>-</mo><msub><mi>μ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>+</mo><msub><mi>μ</mi><mn>3</mn></msub><mo>+</mo><msubsup><mi>η</mi><mi>i</mi><mo>≥</mo></msubsup><msub><mi>x</mi><mi>i</mi></msub><mo>,</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo>∩</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mo>-</mo><msub><mi>μ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>+</mo><msub><mi>μ</mi><mn>3</mn></msub><mo>-</mo><msubsup><mi>η</mi><mi>i</mi><mo>≤</mo></msubsup><msub><mi>x</mi><mi>i</mi></msub><mo>,</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo>∩</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><msub><mi>μ</mi><mn>3</mn></msub><mo>+</mo><msubsup><mi>η</mi><mi>i</mi><mo>≥</mo></msubsup><msub><mi>x</mi><mi>i</mi></msub><mo>,</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mrow><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo stretchy="true">\</mo><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><msub><mi>μ</mi><mn>3</mn></msub><mo>-</mo><msubsup><mi>η</mi><mi>i</mi><mo>≤</mo></msubsup><msub><mi>x</mi><mi>i</mi></msub><mo>,</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mrow><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo stretchy="true">\</mo><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><msub><mi>μ</mi><mn>3</mn></msub><mo>+</mo><msub><mi>ν</mi><mi>i</mi></msub><mo>,</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mi>i</mi><mo>∈</mo><mi mathvariant="script">N</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><msub><mi>μ</mi><mn>3</mn></msub><mo>,</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>else</mtext><mspace width="0.333333em" /><mo>.</mo></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mtd></mtr></mtable></mrow></math>
Graph
- It follows from (12) and the components of c being pairwise different that there can be at most one element <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><mi mathvariant="script">O</mi><mfenced close=")" open="("><mi>x</mi><mo>,</mo><mi>y</mi></mfenced></mrow></math> . If <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="script">E</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo><mo>∪</mo><mi mathvariant="script">H</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></math> consists of fewer than <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>n</mi><mo>-</mo><mi>s</mi><mo>-</mo><mn>1</mn></mrow></math> elements, we get:
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><munderover><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mi>y</mi><mi>i</mi></msub><mo>≤</mo><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>-</mo><mi>s</mi><mo>-</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><mo>·</mo><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo stretchy="false">)</mo></mrow><mo>+</mo><msub><mi>y</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><mo><</mo><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>-</mo><mi>s</mi><mo>-</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><mo>·</mo><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo stretchy="false">)</mo></mrow><mo><</mo><mi>n</mi><mo>-</mo><mi>s</mi><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- a contradiction. Finally, we assume that <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="script">N</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></math> consists of more than s elements. In this case, there are at most <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>n</mi><mo>-</mo><mi>s</mi><mo>-</mo><mn>1</mn></mrow></math> nonvanishing components of y. Consequently,
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><munderover><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mi>y</mi><mi>i</mi></msub><mo>≤</mo><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>-</mo><mi>s</mi><mo>-</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><mo>·</mo><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo stretchy="false">)</mo></mrow><mo><</mo><mi>n</mi><mo>-</mo><mi>s</mi></mrow></mtd></mtr></mtable></mrow></math>
Graph
- provides a contradiction.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>□</mo></math>
We apply the general result on the Scholtes-type regularization of MPOC in our context for the regularized continuous reformulation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> , see [[4]].
Theorem 3
(Convergence from <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> , cf. [[4]]) Suppose that a sequence of Karush–Kuhn–Tucker points <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow></math> of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> converges to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></math> . If MPOC-LICQ holds at <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></math> , then it is a T-stationary point of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> .
From the proof of Theorem 3 in [[4]] also the convergence of the corresponding multipliers can be deduced.
Remark 1
(Convergence of multipliers) Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><msup><mi>λ</mi><mi>t</mi></msup><mo>,</mo><msup><mi>μ</mi><mi>t</mi></msup><mo>,</mo><msup><mi>η</mi><mi>t</mi></msup><mo>,</mo><msup><mi>ν</mi><mi>t</mi></msup></mfenced></math> be the multipliers of the Karush–Kuhn–Tucker points <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></math> of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><mover accent="true"><mrow><mi>λ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></math> of the T-stationary point <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></math> of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> as in Theorem 3. Due to MPOC-LICQ at <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></math> , we have:
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><msup><mi>λ</mi><mi>t</mi></msup><mo>=</mo><mover accent="true"><mrow><mi>λ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><msup><mi>μ</mi><mi>t</mi></msup><mo>=</mo><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></math> ,
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><mfenced close=")" open="("><msubsup><mi>η</mi><mrow><mi>i</mi></mrow><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><mo>-</mo><msubsup><mi>η</mi><mrow><mi>i</mi></mrow><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup></mfenced><msubsup><mi>y</mi><mrow><mi>i</mi></mrow><mi>t</mi></msubsup><mo>=</mo><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math> ,
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><msubsup><mi>ν</mi><mrow><mi>i</mi></mrow><mi>t</mi></msubsup><mo>+</mo><mfenced close=")" open="("><msubsup><mi>η</mi><mrow><mi>i</mi></mrow><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><mo>-</mo><msubsup><mi>η</mi><mrow><mi>i</mi></mrow><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup></mfenced><msubsup><mi>x</mi><mrow><mi>i</mi></mrow><mi>t</mi></msubsup><mo>=</mo><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math> ,
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><mfenced close=")" open="("><msubsup><mi>η</mi><mrow><mi>i</mi></mrow><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><mo>-</mo><msubsup><mi>η</mi><mrow><mi>i</mi></mrow><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup></mfenced><msubsup><mi>y</mi><mrow><mi>i</mi></mrow><mi>t</mi></msubsup><mo>=</mo><msub><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><msubsup><mi>ν</mi><mrow><mi>i</mi></mrow><mi>t</mi></msubsup><mo>+</mo><mfenced close=")" open="("><msubsup><mi>η</mi><mrow><mi>i</mi></mrow><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><mo>-</mo><msubsup><mi>η</mi><mrow><mi>i</mi></mrow><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup></mfenced><msubsup><mi>x</mi><mrow><mi>i</mi></mrow><mi>t</mi></msubsup><mo>=</mo><msub><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math> .
The convergence of nondegenerate Karush–Kuhn–Tucker points of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> does not prevent the limiting T-stationary point of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> from being degenerate. Let us present in Example 1 the failure of NDT2. Examples with the failure of NDT1, NDT3, or NDT4 are not difficult to construct analogously.
Example 1
(Failure of NDT2) We consider the following Scholtes-type regularization <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> with <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>s</mi><mo>=</mo><mn>1</mn></mrow></math> :
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mrow><mrow /><mi mathvariant="script">S</mi><mo>:</mo><mspace width="1em" /><munder><mo movablelimits="false">min</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></munder><msup><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo>-</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mn>2</mn></msub><mo>-</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><mn>2</mn></msup><mo>+</mo><msub><mi>c</mi><mn>1</mn></msub><msub><mi>y</mi><mn>1</mn></msub><mo>+</mo><mrow><mo stretchy="false">(</mo><msub><mi>c</mi><mn>1</mn></msub><mo>+</mo><mfrac><mn>5</mn><mn>36</mn></mfrac><mo stretchy="false">)</mo></mrow><msub><mi>y</mi><mn>2</mn></msub></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mrow /></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="1em" /><mspace width="2em" /><mspace width="0.333333em" /><mtext>s.t.</mtext><mspace width="0.333333em" /><mn>1</mn><mo>+</mo><msub><mi>x</mi><mn>1</mn></msub><mo>-</mo><msub><mi>x</mi><mn>2</mn></msub><mo>≥</mo><mn>0</mn><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mrow /></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="1em" /><mspace width="2em" /><mspace width="2em" /><msub><mi>y</mi><mn>1</mn></msub><mo>+</mo><msub><mi>y</mi><mn>2</mn></msub><mo>≥</mo><mn>1</mn><mo>,</mo><mspace width="1em" /><mo>-</mo><mi>t</mi><mo>≤</mo><msub><mi>x</mi><mi>i</mi></msub><msub><mi>y</mi><mi>i</mi></msub><mo>≤</mo><mi>t</mi><mo>,</mo><mspace width="1em" /><mn>0</mn><mo>≤</mo><msub><mi>y</mi><mi>i</mi></msub><mo>≤</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>,</mo><mspace width="1em" /><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
as well as the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>=</mo><mrow><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></math> .We claim that this point is a nondegenerate Karush–Kuhn–Tucker point for <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mo><</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>-</mo><msqrt><mfrac><mn>13</mn><mn>72</mn></mfrac></msqrt></mrow></math> . Indeed, it holds:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>2</mn><mi>t</mi><mo>-</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>c</mi><mn>1</mn></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>c</mi><mn>1</mn></msub><mo>+</mo><mfrac><mn>5</mn><mn>36</mn></mfrac></mrow></mtd></mtr></mtable></mrow></mfenced><mo>=</mo><msubsup><mi>μ</mi><mn>3</mn><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>1</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>-</mo><msubsup><mi>η</mi><mn>1</mn><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mi>t</mi></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><msubsup><mi>ν</mi><mn>2</mn><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>1</mn></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mtd></mtr></mtable></mrow></math>
Graph
with the positive multipliers <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>μ</mi><mn>3</mn><mi>t</mi></msubsup><mo>=</mo><msub><mi>c</mi><mn>1</mn></msub><mo>+</mo><mn>2</mn><mi>t</mi><mo>-</mo><mn>2</mn><msup><mi>t</mi><mn>2</mn></msup></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>η</mi><mn>1</mn><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup><mo>=</mo><mn>2</mn><mo>-</mo><mn>2</mn><mi>t</mi></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>ν</mi><mn>2</mn><mi>t</mi></msubsup><mo>=</mo><mfrac><mn>5</mn><mn>36</mn></mfrac><mo>-</mo><mn>2</mn><mi>t</mi><mo>+</mo><mn>2</mn><msup><mi>t</mi><mn>2</mn></msup></mrow></math> . The tangent space is <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mi mathvariant="script">S</mi></msubsup><mo>=</mo><mfenced close="}" open="{"><mi>ξ</mi><mo>∈</mo><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mn>4</mn></msup><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mi>ξ</mi><mn>1</mn></msub><mo>=</mo><msub><mi>ξ</mi><mn>3</mn></msub><mo>=</mo><msub><mi>ξ</mi><mn>4</mn></msub><mo>=</mo><mn>0</mn></mfenced></mfenced></mrow></math> . The Hessian of the corresponding Lagrange function is
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msup><mi>D</mi><mn>2</mn></msup><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>=</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mrow><mrow /><mspace width="1em" /><mn>0</mn></mrow></mtd><mtd><mrow><mrow /><mspace width="1em" /><mn>2</mn><mo>-</mo><mn>2</mn><mi>t</mi></mrow></mtd><mtd><mrow><mrow /><mspace width="1em" /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd><mtd><mrow><mrow /><mspace width="1em" /><mn>2</mn></mrow></mtd><mtd><mrow><mrow /><mspace width="1em" /><mn>0</mn></mrow></mtd><mtd><mrow><mrow /><mspace width="1em" /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>2</mn><mo>-</mo><mn>2</mn><mi>t</mi></mrow></mtd><mtd><mrow><mrow /><mspace width="1em" /><mn>0</mn></mrow></mtd><mtd><mrow><mrow /><mspace width="1em" /><mn>0</mn></mrow></mtd><mtd><mrow><mrow /><mspace width="1em" /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd><mtd><mrow><mrow /><mspace width="1em" /><mn>0</mn></mrow></mtd><mtd><mrow><mrow /><mspace width="1em" /><mn>0</mn></mrow></mtd><mtd><mrow><mrow /><mspace width="1em" /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
Therefore, it is straightforward that <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>D</mi><mn>2</mn></msup><mspace width="0.166667em" /><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><msub><mo>↾</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mi mathvariant="script">S</mi></msubsup></msub></mrow></math> is nonsingular. We conclude that ND1-ND3 are fulfilled at <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow></math> . Moreover, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow></math> converges to <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow></math> if <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></math> . This point is T-stationary for the corresponding regularized continuous reformulation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> according to Theorem 3, since MPOC-LICQ is fulfilled. Indeed, we obtain the T-stationarity condition
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mo>-</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>c</mi><mn>1</mn></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>c</mi><mn>1</mn></msub><mo>+</mo><mfrac><mn>5</mn><mn>36</mn></mfrac></mrow></mtd></mtr></mtable></mrow></mfenced><mo>=</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>1</mn></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mo>-</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>1</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>1</mn></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mtd></mtr></mtable></mrow></math>
Graph
with the unique multipliers <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>1</mn></msub><mo>=</mo><mn>0</mn><mo>,</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub><mo>=</mo><msub><mi>c</mi><mn>1</mn></msub><mo>,</mo><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>=</mo><mo>-</mo><mn>2</mn><mo>,</mo><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mo>=</mo><mfrac><mn>5</mn><mn>36</mn></mfrac></mrow></math> . However, NDT2 is violated at <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> . <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>□</mo></math>
Due to Example 1, we cannot expect that a T-stationary point of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> , which is the limit of a sequence of nondegenerate Karush–Kuhn–Tucker points of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> , is also nondegenerate. Instead, we intend to examine its type if assuming nondegeneracy. Next Lemma 3 provides some valuable insights into the relations between active index sets while doing so.
Lemma 3
(Active index sets) Suppose a sequence of Karush–Kuhn–Tucker points <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></math> of <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="script">S</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></math> converges to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></math> . Moreover, let <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> be a nondegenerate T-stationary point of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> . Then, for all sufficiently small t it holds:
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>=</mo><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced></mrow></math> ,
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="script">E</mi><mfenced close=")" open="("><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>=</mo><mi mathvariant="script">E</mi><mfenced close=")" open="("><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math> ,
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>⊂</mo><mi mathvariant="script">H</mi><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math> ,
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="script">N</mi><mfenced close=")" open="("><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>⊂</mo><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>⊂</mo><mi mathvariant="script">N</mi><mfenced close=")" open="("><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>∪</mo><mi mathvariant="script">H</mi><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math> .
Proof
a) We start by proving <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>=</mo><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced></mrow></math> . Due to continuity arguments, we have <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced><mo>⊂</mo><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math> for all sufficiently small t. Let us now assume that there exists <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mrow><mo stretchy="true">\</mo></mrow><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced></mrow></math> along a subsequence. Hence, for the corresponding multipliers it holds <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>μ</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup><mo>=</mo><mn>0</mn></mrow></math> . NDT1 allows us to apply Remark 1, and we thus have <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><mo>=</mo><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mi>∞</mi></mrow></munder><msubsup><mi>μ</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup><mo>=</mo><mn>0</mn></mrow></math> , a contradiction to NDT2. Consequently, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>=</mo><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced></mrow></math> holds for all sufficiently small t.
b) Next, we prove <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="script">E</mi><mfenced close=")" open="("><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>=</mo><mi mathvariant="script">E</mi><mfenced close=")" open="("><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math> . Again, continuity arguments provide <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="script">E</mi><mfenced close=")" open="("><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>⊂</mo><mi mathvariant="script">E</mi><mfenced close=")" open="("><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math> for all sufficiently small t. Similar to the first part of the proof, we now assume there exists <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><mi mathvariant="script">E</mi><mfenced close=")" open="("><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mrow><mo stretchy="true">\</mo><mi mathvariant="script">E</mi></mrow><mfenced close=")" open="("><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math> along a subsequence. As we have seen in Lemma 1, T-stationarity of <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> implies in particular <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>c</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><mo>=</mo><mo>-</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo>+</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>3</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub></mrow></math> . Moreover, NDT1 and Remark 1 provide <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><msubsup><mi>μ</mi><mrow><mn>3</mn></mrow><mi>t</mi></msubsup><mo>=</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub></mrow></math> . Since <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∉</mo><mi mathvariant="script">N</mi><mfenced close=")" open="("><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math> , we distinguish the following cases:
- (i)
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mrow><mo stretchy="true">\</mo><mi mathvariant="script">E</mi></mrow><mfenced close=")" open="("><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math>
- . Karush–Kuhn–Tucker conditions for
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></math>
• imply
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>c</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><mo>=</mo><msubsup><mi>μ</mi><mrow><mn>3</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup><mo>+</mo><msubsup><mi>η</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><msub><mi>x</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></mrow></math>
- , cf. (12). It follows
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>-</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo>+</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>3</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo>=</mo><msubsup><mi>μ</mi><mrow><mn>3</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup><mo>+</mo><msubsup><mi>η</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><msub><mi>x</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></mrow></math>
- . By taking the limit, we can cancel out
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>3</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub></math>
• and
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>μ</mi><mrow><mn>3</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup></math>
- . This leads to a contradiction because the left-hand side of the equation is strictly negative due to NDT2 and the right-hand side is nonnegative since
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>η</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup></math>
- is nonnegative and
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>x</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></math>
- is positive.
- (ii)
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mrow><mo stretchy="true">\</mo><mi mathvariant="script">E</mi></mrow><mfenced close=")" open="("><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math>
- . By using (12), we get
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>c</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><mo>=</mo><msubsup><mi>μ</mi><mrow><mn>3</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup><mo>-</mo><msubsup><mi>η</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup><msub><mi>x</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></mrow></math>
- . This leads to a contradiction just as in the previous case.
- (iii)
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><mi mathvariant="script">O</mi><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math>
- . Analogously, we obtain
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>c</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><mo>=</mo><msubsup><mi>μ</mi><mrow><mn>3</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup></mrow></math>
- from (12). It follows
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>-</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo>+</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>3</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo>=</mo><msubsup><mi>μ</mi><mrow><mn>3</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup></mrow></math>
- . Taking the limits leads to
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo>=</mo><mn>0</mn></mrow></math>
- , a contradiction with NDT2.
Altogether, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="script">E</mi><mfenced close=")" open="("><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mrow><mo stretchy="true">\</mo><mi mathvariant="script">E</mi></mrow><mfenced close=")" open="("><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>=</mo><mi mathvariant="normal">∅</mi></mrow></math> for all sufficiently small t, and the assertion follows.
c) Clearly, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>∩</mo><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>=</mo><mi mathvariant="normal">∅</mi></mrow></math> for sufficiently small t.
Let us assume there exists an <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>∩</mo><mi mathvariant="script">N</mi><mfenced close=")" open="("><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math> . In view of (12), we have <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>c</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><mo>=</mo><msubsup><mi>μ</mi><mn>3</mn><mi>t</mi></msubsup><mo>+</mo><msubsup><mi>ν</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup></mrow></math> . Due to the T-stationarity of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></math> , the <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mi>i</mi><mo stretchy="false">)</mo></mrow></math> -th row of (5) reads as
13 <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>c</mi><mi>i</mi></msub><mo>=</mo><mfenced open="{"><mrow><mtable><mtr><mtd columnalign="left"><mrow><mo>-</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>+</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub><mo>,</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>+</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub><mo>,</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><msub><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>+</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub><mo>,</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub><mo>,</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>else</mtext><mspace width="0.333333em" /><mo>.</mo></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mtd></mtr></mtable></mrow></math>
Graph
This provides <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>c</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><mo>=</mo><msub><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo>+</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub></mrow></math> . According to Remark 1, we have <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><msubsup><mi>μ</mi><mrow><mn>3</mn></mrow><mi>t</mi></msubsup><mo>=</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub></mrow></math> . Consequently, it must hold <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><msubsup><mi>ν</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup><mo>=</mo><msub><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub></mrow></math> . This, however, cannot be true since <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>ν</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup><mo>≥</mo><mn>0</mn></mrow></math> , while <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo><</mo><mn>0</mn></mrow></math> due to NDT3 from the nondegeneracy of <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> , a contradiction. Let us assume now that there exists an <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>∩</mo><mi mathvariant="script">O</mi><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math> . Analogously, we get <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo>=</mo><mn>0</mn></mrow></math> , again a contradiction to NDT3. Overall, we get the assertion.
d) Clearly, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>∩</mo><mi mathvariant="script">N</mi><mrow><mo stretchy="false">(</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>=</mo><mi mathvariant="normal">∅</mi></mrow></math> for sufficiently small t. From c) we also know that <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>∩</mo><mi mathvariant="script">N</mi><mrow><mo stretchy="false">(</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>=</mo><mi mathvariant="normal">∅</mi></mrow></math> . Altogether, the first inclusion of the assertion follows immediately. Further, it also holds <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>∩</mo><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>=</mo><mi mathvariant="normal">∅</mi></mrow></math> for sufficiently small t. Let us assume there exists an <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msub><mi>a</mi><mn>10</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>∩</mo><mi mathvariant="script">O</mi><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math> . Due to (12), we have <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>c</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><mo>=</mo><msubsup><mi>μ</mi><mn>3</mn><mi>t</mi></msubsup></mrow></math> . In view of Lemma 1c), there exists an index <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mi>i</mi><mo stretchy="false">~</mo></mover><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mrow><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo stretchy="true">\</mo><mi mathvariant="script">E</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math> . Thus, T-stationarity of <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> implies via (13) that <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>c</mi><mover accent="true"><mi>i</mi><mo stretchy="false">~</mo></mover></msub><mo>=</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub></mrow></math> . By taking the limit and Remark 1, we obtain <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>c</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><mo>=</mo><msub><mi>c</mi><mover accent="true"><mi>i</mi><mo stretchy="false">~</mo></mover></msub></mrow></math> , but <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>≠</mo><mover accent="true"><mi>i</mi><mo stretchy="false">~</mo></mover></mrow></math> , a contradiction to the choice of c. <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>□</mo></math>
Theorem 4 highlights the convergence properties of the Scholtes-type regularization method. Its proof can be found in the Appendix below.
Theorem 4
(Convergence from <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> again) Suppose that a sequence of nondegenerate Karush–Kuhn–Tucker points <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow></math> of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> with quadratic index m converges to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></math> . If <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> is a nondegenerate T-stationary point of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> , then we have for its T-index:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mo movablelimits="true">max</mo><mfenced close="}" open="{"><mi>m</mi><mo>-</mo><mfenced close="|" open="|"><mfenced close="}" open="{"><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>=</mo><mn>0</mn></mfenced></mfenced></mfenced><mo>,</mo><mn>0</mn></mfenced><mo>≤</mo><mi>T</mi><mi>I</mi><mo>≤</mo><mi>m</mi><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
If additionally NDT6 holds at <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> , then the indices coincide, i.e. <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>T</mi><mi>I</mi><mo>=</mo><mi>m</mi></mrow></math> .
Let us illustrate the necessity of NDT6 for the validity of Theorem 4.
Example 2
(Necessity of NDT6) We consider the following Scholtes-type regularization <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> with <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>s</mi><mo>=</mo><mn>1</mn></mrow></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>0</mn><mo><</mo><msub><mi>c</mi><mn>1</mn></msub><mo><</mo><msub><mi>c</mi><mn>2</mn></msub></mrow></math> :
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mrow><mrow /><mi mathvariant="script">S</mi><mo>:</mo><mspace width="1em" /><munder><mo movablelimits="false">min</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></munder><msup><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><msub><mi>x</mi><mn>1</mn></msub><mo stretchy="false">)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow><mo stretchy="false">(</mo><mn>3</mn><mo>-</mo><mn>2</mn><msub><mi>x</mi><mn>2</mn></msub><mo stretchy="false">)</mo></mrow><mn>2</mn></msup><mo>+</mo><msub><mi>c</mi><mn>1</mn></msub><msub><mi>y</mi><mn>1</mn></msub><mo>+</mo><msub><mi>c</mi><mn>2</mn></msub><msub><mi>y</mi><mn>2</mn></msub></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mrow /></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="1em" /><mspace width="2em" /><mspace width="0.333333em" /><mtext>s.t.</mtext><mspace width="0.333333em" /><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><msub><mi>x</mi><mn>2</mn></msub><mo>-</mo><mn>1</mn><mo>≥</mo><mn>0</mn><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mrow /></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="1em" /><mspace width="2em" /><mspace width="2em" /><msub><mi>y</mi><mn>1</mn></msub><mo>+</mo><msub><mi>y</mi><mn>2</mn></msub><mo>≥</mo><mn>1</mn><mo>,</mo><mspace width="1em" /><mo>-</mo><mi>t</mi><mo>≤</mo><msub><mi>x</mi><mi>i</mi></msub><msub><mi>y</mi><mi>i</mi></msub><mo>≤</mo><mi>t</mi><mo>,</mo><mspace width="1em" /><mn>0</mn><mo>≤</mo><msub><mi>y</mi><mi>i</mi></msub><mo>≤</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>,</mo><mspace width="1em" /><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
as well as the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>=</mo><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></math> . We claim that this point is a nondegenerate Karush–Kuhn–Tucker point. Indeed, it holds:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>c</mi><mn>1</mn></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>c</mi><mn>2</mn></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>=</mo><msubsup><mi>μ</mi><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><msubsup><mi>μ</mi><mn>3</mn><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>1</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><msubsup><mi>ν</mi><mn>2</mn><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>1</mn></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mtd></mtr></mtable></mrow></math>
Graph
with the positive multipliers <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>μ</mi><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow><mi>t</mi></msubsup><mo>=</mo><mn>2</mn><mo>,</mo><msubsup><mi>μ</mi><mn>3</mn><mi>t</mi></msubsup><mo>=</mo><msub><mi>c</mi><mn>1</mn></msub><mo>,</mo><msubsup><mi>ν</mi><mn>2</mn><mi>t</mi></msubsup><mo>=</mo><msub><mi>c</mi><mn>2</mn></msub><mo>-</mo><msub><mi>c</mi><mn>1</mn></msub></mrow></math> . Obviously, LICQ and strict complementarity, i.e. ND1 and ND2, respectively, are fulfilled. We show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>D</mi><mn>2</mn></msup><mspace width="0.166667em" /><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><msub><mo>↾</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mi mathvariant="script">S</mi></msubsup></msub></mrow></math> is nonsingular and calculate the number of its negative eigenvalues. The tangent space is <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mi mathvariant="script">S</mi></msubsup><mo>=</mo><mfenced close="}" open="{"><mi>ξ</mi><mo>∈</mo><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mn>4</mn></msup><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mi>ξ</mi><mn>1</mn></msub><mo>+</mo><msub><mi>ξ</mi><mn>2</mn></msub><mo>=</mo><mn>0</mn><mo>,</mo><msub><mi>ξ</mi><mn>3</mn></msub><mo>=</mo><msub><mi>ξ</mi><mn>4</mn></msub><mo>=</mo><mn>0</mn></mfenced></mfenced></mrow></math> . For the Hessian of the corresponding Lagrange function we have:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msup><mi>D</mi><mn>2</mn></msup><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>=</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>2</mn></mtd><mtd><mrow><mrow /><mspace width="1em" /><mn>0</mn></mrow></mtd><mtd><mrow><mrow /><mspace width="1em" /><mn>0</mn></mrow></mtd><mtd><mrow><mrow /><mspace width="1em" /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd><mtd><mrow><mrow /><mspace width="1em" /><mo>-</mo><mn>4</mn></mrow></mtd><mtd><mrow><mrow /><mspace width="1em" /><mn>0</mn></mrow></mtd><mtd><mrow><mrow /><mspace width="1em" /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd><mtd><mrow><mrow /><mspace width="1em" /><mn>0</mn></mrow></mtd><mtd><mrow><mrow /><mspace width="1em" /><mn>0</mn></mrow></mtd><mtd><mrow><mrow /><mspace width="1em" /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd><mtd><mrow><mrow /><mspace width="1em" /><mn>0</mn></mrow></mtd><mtd><mrow><mrow /><mspace width="1em" /><mn>0</mn></mrow></mtd><mtd><mrow><mrow /><mspace width="1em" /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
Thus, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>ξ</mi><mo>∈</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mi mathvariant="script">S</mi></msubsup></mrow></math> it holds:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msup><mi>ξ</mi><mi>T</mi></msup><msup><mi>D</mi><mn>2</mn></msup><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mi>ξ</mi><mo>=</mo><mn>2</mn><msubsup><mi>ξ</mi><mn>1</mn><mn>2</mn></msubsup><mo>-</mo><mn>4</mn><msubsup><mi>ξ</mi><mn>2</mn><mn>2</mn></msubsup><mo>=</mo><mo>-</mo><mn>2</mn><msubsup><mi>ξ</mi><mn>1</mn><mn>2</mn></msubsup><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
Hence, ND3 is also fulfilled, the Karush–Kuhn–Tucker point <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></math> is nondegenerate and its quadratic index equals one, i.e. <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow></math> in Theorem 4. The limiting point is <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow></math> . This point is T-stationary for the corresponding regularized continuous reformulation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> according to Theorem 3, since MPOC-LICQ is fulfilled. Indeed, we have:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>c</mi><mn>1</mn></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>c</mi><mn>2</mn></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>=</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>1</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>1</mn></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mtd></mtr></mtable></mrow></math>
Graph
with the unique multipliers <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>=</mo><mn>2</mn><mo>,</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub><mo>=</mo><msub><mi>c</mi><mn>1</mn></msub><mo>,</mo><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mo>=</mo><msub><mi>c</mi><mn>2</mn></msub><mo>-</mo><msub><mi>c</mi><mn>1</mn></msub><mo>.</mo></mrow></math> It is easy to see that this point is nondegenerate with vanishing T-index, i.e. <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>T</mi><mi>I</mi><mo>=</mo><mn>0</mn></mrow></math> , since <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>=</mo><mi mathvariant="normal">∅</mi></mrow></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mi mathvariant="script">R</mi></msubsup><mo>=</mo><mrow><mo stretchy="false">{</mo><mn>0</mn><mo stretchy="false">}</mo></mrow></mrow></math> . Note that additionally <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mfenced close="}" open="{"><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>=</mo><mn>0</mn></mfenced></mfenced><mo>=</mo><mrow><mo stretchy="false">{</mo><mn>1</mn><mo stretchy="false">}</mo></mrow></mrow></math> . Although all assumptions of Theorem 4 are fulfilled, we have here:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mi>T</mi><mi>I</mi><mo>=</mo><mo movablelimits="true">max</mo><mfenced close="}" open="{"><mi>m</mi><mo>-</mo><mfenced close="|" open="|"><mfenced close="}" open="{"><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>=</mo><mn>0</mn></mfenced></mfenced></mfenced><mo>,</mo><mn>0</mn></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
With other words, the saddle points of the Scholtes-type regularization <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> approximate a minimizer of the regularized continuous reformulation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> . The reason is that the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math> -multipliers corresponding to zero x- and nonzero y-variables vanish. The lower bound given in Theorem 4 is attained. <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>□</mo></math>
Next, we point out that the assumption NDT6 is not restrictive at all.
Remark 2
(Genericity for NDT6) Let us briefly sketch why condition NDT6 must be generically fulfilled at the T-stationary points of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> . First, we note that all T-stationary points of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> are generically nondegenerate, see [[9]]. Now, let us count the losses of freedom induced by the definition of a T-stationary point. For feasibility we have <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close="|" open="|"><mi>P</mi></mfenced></math> equality constraints, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close="|" open="|"><msub><mi>Q</mi><mn>0</mn></msub></mfenced></math> active inequality constraints, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close="|" open="|"><mi mathvariant="script">E</mi></mfenced></math> bounding constraints on the y-variables, potentially one summation constraint, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mfenced close="|" open="|"><msub><mi>a</mi><mn>01</mn></msub></mfenced><mo>+</mo><mfenced close="|" open="|"><msub><mi>a</mi><mn>10</mn></msub></mfenced><mo>+</mo><mn>2</mn><mfenced close="|" open="|"><msub><mi>a</mi><mn>00</mn></msub></mfenced></mrow></math> orthogonality type constraints. Additional losses of freedom come from the T-stationarity condition. They amount to <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>2</mn><mi>n</mi><mo>-</mo><mfenced close="|" open="|"><mi>P</mi></mfenced><mo>-</mo><mfenced close="|" open="|"><msub><mi>Q</mi><mn>0</mn></msub></mfenced><mo>-</mo><mfenced close="|" open="|"><mi mathvariant="script">E</mi></mfenced><mo>-</mo><mn>1</mn><mo>-</mo><mfenced close="|" open="|"><msub><mi>a</mi><mn>01</mn></msub></mfenced><mo>-</mo><mfenced close="|" open="|"><msub><mi>a</mi><mn>10</mn></msub></mfenced><mo>-</mo><mn>2</mn><mfenced close="|" open="|"><msub><mi>a</mi><mn>00</mn></msub></mfenced></mrow></math> if the summation constraint is active, and to <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>2</mn><mi>n</mi><mo>-</mo><mfenced close="|" open="|"><mi>P</mi></mfenced><mo>-</mo><mfenced close="|" open="|"><msub><mi>Q</mi><mn>0</mn></msub></mfenced><mo>-</mo><mfenced close="|" open="|"><mi mathvariant="script">E</mi></mfenced><mo>-</mo><mfenced close="|" open="|"><msub><mi>a</mi><mn>01</mn></msub></mfenced><mo>-</mo><mfenced close="|" open="|"><msub><mi>a</mi><mn>10</mn></msub></mfenced><mo>-</mo><mn>2</mn><mfenced close="|" open="|"><msub><mi>a</mi><mn>00</mn></msub></mfenced></mrow></math> otherwise. In both cases, the losses of freedom are equal to the number of variables 2n. The violation of NDT6 would produce an additional loss of freedom, which would imply that the total available degrees of freedom 2n are exceeded. By virtue of the structured jet transversality theorem from [[12]], this cannot happen generically. <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>□</mo></math>
Let us examine the set of multipliers from Theorem 4 in terms of CCOP.
Lemma 4
Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> be a nondegenerate M-stationary point of CCOP. Then, for any <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> is a T-stationary point of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> we have
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfenced close="}" open="{"><mi>i</mi><mo>∈</mo><msub><mi>I</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mover accent="true"><mrow><mi>γ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mo>=</mo><mn>0</mn></mfenced></mfenced><mo>=</mo><mfenced close="}" open="{"><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mo>=</mo><mn>0</mn></mfenced></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
Proof
We refer to the proof of Theorem 3.7 from [[9]]. There, it was shown how any T-stationary point <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> can be constructed by means of a nondegenerate M-stationary point <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> of CCOP. Specifically, the corresponding multipliers were set as
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>=</mo><msub><mover accent="true"><mrow><mi>γ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mspace width="0.333333em" /><mtext>all</mtext><mspace width="0.333333em" /><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
We conclude
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfenced close="}" open="{"><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mover accent="true"><mrow><mi>γ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mo>=</mo><mn>0</mn></mfenced></mfenced><mo>=</mo><mfenced close="}" open="{"><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mo>=</mo><mn>0</mn></mfenced></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
Let us assume that <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mfenced close="∥" open="∥"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mn>0</mn></msub><mo><</mo><mi>s</mi></mrow></math> additionally holds. Hence, in virtue of NDM3 we have
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfenced close="}" open="{"><mi>i</mi><mo>∈</mo><msub><mi>I</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mover accent="true"><mrow><mi>γ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mo>=</mo><mn>0</mn></mfenced></mfenced><mo>=</mo><mi mathvariant="normal">∅</mi><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
By recalling <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>⊂</mo><msub><mi>I</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math> , the assertion follows.
Suppose now <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mfenced close="∥" open="∥"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mn>0</mn></msub><mo>=</mo><mi>s</mi></mrow></math> instead. Due to Lemma 1b), we have
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfenced close="|" open="|"><msub><mi>I</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mfenced><mo>=</mo><mi>n</mi><mo>-</mo><mi>s</mi><mo>=</mo><mfenced close="|" open="|"><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
Since <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>I</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>=</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>∪</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math> , we conclude <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>=</mo><mi mathvariant="normal">∅</mi></mrow></math> . Thus, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>I</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>=</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math> and the assertion follows. <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>□</mo></math>
In view of Theorem 1 we get the following convergence properties of the proposed Scholtes-type regularization with respect to the underlying CCOP.
Corollary 1
(Convergence from <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> to CCOP)
- Suppose that a sequence of Karush–Kuhn–Tucker points <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow></math> of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> converges to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></math> . If CC-LICQ holds at <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> , then <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> is an M-stationary point of CCOP.
- Suppose that a sequence of nondegenerate Karush–Kuhn–Tucker points <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow></math> of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> with quadratic index m converges to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></math> . If <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> is a nondegenerate M-stationary point of CCOP, then we have for its M-index MI:
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mo movablelimits="true">max</mo><mfenced close="}" open="{"><mi>m</mi><mo>-</mo><mfenced close="|" open="|"><mfenced close="}" open="{"><mi>i</mi><mo>∈</mo><msub><mi>I</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mover accent="true"><mrow><mi>γ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mo>=</mo><mn>0</mn></mfenced></mfenced></mfenced><mo>,</mo><mn>0</mn></mfenced><mo>≤</mo><mi>M</mi><mi>I</mi><mo>≤</mo><mi>m</mi><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- If additionally NDM5 holds, then the indices coincide, i.e. <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>M</mi><mi>I</mi><mo>=</mo><mi>m</mi></mrow></math> .
Proof
- Due to continuity arguments, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> is feasible for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> . Let us show that the latter implies feasibility of <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> for CCOP. For this purpose we assume instead <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mfenced close="∥" open="∥"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mn>0</mn></msub><mo>></mo><mi>s</mi></mrow></math> . Consequently, we have
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mi>n</mi><mo>-</mo><mi>s</mi><mo>></mo><mfenced close="|" open="|"><msub><mi>I</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mfenced><mo>≥</mo><mfenced close="|" open="|"><msub><mi>a</mi><mn>01</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- Thus, it holds for <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> :
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><munderover><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mo>=</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></munder><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mo>≤</mo><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>-</mo><mi>s</mi><mo>-</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo stretchy="false">)</mo></mrow><mo><</mo><mi>n</mi><mo>-</mo><mi>s</mi><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- a contradiction to its feasibility. Overall, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> has to be feasible for CCOP and, thus, we can apply Proposition 3.2a) from [[9]]. The latter states that if <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> is feasible for CCOP and satisfies CC-LICQ, then MPOC-LICQ holds at any <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow></math> that is feasible for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> . Hence, in view of Theorem 3, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> is a T-stationary point of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> . Therefore, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> is M-stationary, due to Theorem 1b).
- We deduce as above that <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> is a T-stationary point of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> . Using Theorem 1, we have that <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> is nondegenerate fulfilling NDT5. According to Theorem 4, for its T-index TI it holds
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mo movablelimits="true">max</mo><mfenced close="}" open="{"><mi>m</mi><mo>-</mo><mfenced close="|" open="|"><mfenced close="}" open="{"><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>=</mo><mn>0</mn></mfenced></mfenced></mfenced><mo>,</mo><mn>0</mn></mfenced><mo>≤</mo><mi>T</mi><mi>I</mi><mo>≤</mo><mi>m</mi><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- However, we again use Theorem 1 to conclude <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>T</mi><mi>I</mi><mo>=</mo><mi>M</mi><mi>I</mi></mrow></math> . In view of Lemma 4, the assertion follows.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>□</mo></math>
Let us briefly comment on condition NDM5. It ensures M-stationary points to have the same index as the approximating Karush–Kuhn–Tucker points of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> .
Remark 3
(On condition NDM5) It follows from Lemma 4 that for a nondegenerate M-stationary point <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> of CCOP the following statements are equivalent:
- NDM5 holds at <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> ,
- NDT6 holds at a T-stationary point <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> ,
- NDT6 holds at all T-stationary points <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> .
Further, due to Theorem 1a), all M-stationary points are induced by at least one T-stationary point. Theorem 1b), Remark 2, and the equivalence above provide that all M-stationary points generically fulfill NDM5. As a consequence, we conclude that generically the bounds given in Corollary 1 are tight, i.e. <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>M</mi><mi>I</mi><mo>=</mo><mi>m</mi></mrow></math> . The latter holds in particular for <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mrow><mo stretchy="false">‖</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">‖</mo></mrow><mn>0</mn></msub><mo><</mo><mi>s</mi></mrow></math> regardless of NDM5, since NDM3 suffices. <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>□</mo></math>
Now, we prove that the Scholtes-type regularization method is well-defined. For the proof see again the Appendix below.
Theorem 5
(Well-posedness of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> from <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> ) Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> be a nondegenerate T-stationary point of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> with T-index m, additionally, fulfilling NDT6. Then, for all sufficiently small t there exists a nondegenerate Karush–Kuhn–Tucker point <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow></math> of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> within a neighborhood of <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> , which has the same quadratic index m. Moreover, for any fixed t sufficiently small, such <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow></math> is the unique Karush–Kuhn–Tucker point of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> in a sufficiently small neighborhood of <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> .
Again, we state the result analogous to Theorem 5 in terms of CCOP.
Corollary 2
(Well-posedness of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> from CCOP) Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> be a nondegenerate M-stationary point of CCOP with M-index m, additionally, fulfilling NDM5. Then, for all sufficiently small t there exists a nondegenerate Karush–Kuhn–Tucker point <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow></math> of S with <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mi>t</mi></msup></math> being within a neighborhood of <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> , which has the same quadratic index m.
Proof
Due to Theorem 1a), there exists at least one nondegenerate T-stationary point <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> . Moreover, Lemma 4 provides that it also fulfills NDT6. Thus, the assertion follows straightforward in view of Theorem 5. <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>□</mo></math>
Let us compare our results with those for the initially proposed continuous reformulation (1) and the Scholtes-type relaxation (2) from [[5]] and [[6]], respectively. There, the concept of S-stationarity for (1) becomes crucial.
Definition 13
(S-stationary, [[5]]) A feasible point <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math> of (1) is called S-stationary if there exist multipliers
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mover accent="true"><mrow><mi>λ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>p</mi></msub><mo>,</mo><mspace width="0.166667em" /><mi>p</mi><mo>∈</mo><mi>P</mi><mo>,</mo><mspace width="1em" /><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>q</mi></msub><mo>,</mo><mspace width="0.166667em" /><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo><mspace width="1em" /><msub><mover accent="true"><mrow><mi>γ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
such that the following conditions hold:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mi mathvariant="normal">∇</mi><mi>f</mi><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><munder><mo movablelimits="false">∑</mo><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow></munder><msub><mover accent="true"><mrow><mi>λ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>p</mi></msub><mi mathvariant="normal">∇</mi><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></munder><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>q</mi></msub><mi mathvariant="normal">∇</mi><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>+</mo><munder><mo>∑</mo><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msub><mover accent="true"><mrow><mi>γ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><msub><mi>e</mi><mi>i</mi></msub><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>q</mi></msub><mo>≥</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mn>0</mn><mo>,</mo><mspace width="0.166667em" /><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
Example 3
We consider the following CCOP with <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>n</mi><mo>=</mo><mn>3</mn></mrow></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>s</mi><mo>=</mo><mn>1</mn></mrow></math> :
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><munder><mo movablelimits="true">min</mo><mi>x</mi></munder><mspace width="0.166667em" /><mspace width="0.166667em" /><msup><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo>-</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mn>2</mn></msub><mo>-</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mn>3</mn></msub><mo>-</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><mn>2</mn></msup><mspace width="1em" /><mspace width="0.333333em" /><mtext>s.</mtext><mspace width="0.333333em" /><mspace width="0.166667em" /><mspace width="0.333333em" /><mtext>t.</mtext><mspace width="0.333333em" /><mspace width="1em" /><msub><mfenced close="∥" open="∥"><mi>x</mi></mfenced><mn>0</mn></msub><mo>≤</mo><mn>1</mn><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
It has minimizers at (1, 0, 0), (0, 1, 0), and (0, 0, 1) as well as a saddle point at (0, 0, 0). It is straightforward to check that all these points are nondegenerate M-stationary points, which additionally fulfill NDM5. For its continuous reformulation (1) we have
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><munder><mo movablelimits="true">min</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></munder><mspace width="0.166667em" /><mspace width="0.166667em" /><msup><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo>-</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mn>2</mn></msub><mo>-</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mn>3</mn></msub><mo>-</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><mn>2</mn></msup><mspace width="1em" /><mspace width="0.333333em" /><mtext>s.</mtext><mspace width="0.333333em" /><mspace width="0.166667em" /><mspace width="0.333333em" /><mtext>t.</mtext><mspace width="0.333333em" /><mspace width="1em" /><msub><mi>y</mi><mn>1</mn></msub><mo>+</mo><msub><mi>y</mi><mn>2</mn></msub><mo>+</mo><msub><mi>y</mi><mn>3</mn></msub><mo>≥</mo><mn>2</mn><mo>,</mo></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mrow /></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="1em" /><msub><mi>x</mi><mi>i</mi></msub><msub><mi>y</mi><mi>i</mi></msub><mo>=</mo><mn>0</mn><mo>,</mo><mspace width="1em" /><mn>0</mn><mo>≤</mo><msub><mi>y</mi><mi>i</mi></msub><mo>≤</mo><mn>1</mn><mo>,</mo><mspace width="1em" /><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
We get as its S-stationary points:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mo>,</mo><mspace width="1em" /><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mo>,</mo><mspace width="1em" /><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
and
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><msub><mi>y</mi><mn>1</mn></msub><mo>,</mo><msub><mi>y</mi><mn>2</mn></msub><mo>,</mo><msub><mi>y</mi><mn>3</mn></msub><mo stretchy="false">)</mo></mrow><mspace width="0.333333em" /><mtext>with</mtext><mspace width="0.333333em" /><mspace width="1em" /><msub><mi>y</mi><mn>1</mn></msub><mo>+</mo><msub><mi>y</mi><mn>2</mn></msub><mo>+</mo><msub><mi>y</mi><mn>3</mn></msub><mo>≥</mo><mn>2</mn><mo>,</mo><mn>0</mn><mo><</mo><msub><mi>y</mi><mi>i</mi></msub><mo>≤</mo><mn>1</mn><mo>,</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>.</mo></mrow></mstyle></mtd></mtr></mtable></mrow></math>
Graph
Hence, we have a continuum of saddle points. Moreover, it was shown in [[4]] that all S-stationary points of reformulation (1) are degenerate T-stationary points, i.e. violating at least one of the conditions NDT1-NDT4. Further, we turn our attention to the Scholtes-type regularization (2)
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><munder><mo movablelimits="true">min</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></munder><mspace width="0.166667em" /><mspace width="0.166667em" /><msup><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo>-</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mn>2</mn></msub><mo>-</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mn>3</mn></msub><mo>-</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><mn>2</mn></msup><mspace width="1em" /><mspace width="0.333333em" /><mtext>s.</mtext><mspace width="0.333333em" /><mspace width="0.166667em" /><mspace width="0.333333em" /><mtext>t.</mtext><mspace width="0.333333em" /><mspace width="0.166667em" /><msub><mi>y</mi><mn>1</mn></msub><mo>+</mo><msub><mi>y</mi><mn>2</mn></msub><mo>+</mo><msub><mi>y</mi><mn>3</mn></msub><mo>≥</mo><mn>2</mn><mo>,</mo></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mrow /></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="1em" /><mo>-</mo><mi>t</mi><mo>≤</mo><msub><mi>x</mi><mi>i</mi></msub><msub><mi>y</mi><mi>i</mi></msub><mo>≤</mo><mi>t</mi><mo>,</mo><mspace width="0.166667em" /><mn>0</mn><mo>≤</mo><msub><mi>y</mi><mi>i</mi></msub><mo>≤</mo><mn>1</mn><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
For t sufficiently small its Karush–Kuhn–Tucker points include
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msup><mi>z</mi><mrow><mn>1</mn><mo>,</mo><mi>t</mi></mrow></msup><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mrow><mo stretchy="false">(</mo><msup><mrow><mover accent="true"><mi>x</mi><mo stretchy="false">~</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><mi>t</mi><mo>,</mo><msup><mrow><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mi>y</mi><mo stretchy="false">~</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><mn>1</mn><mo>,</mo><msup><mrow><mover accent="true"><mi>y</mi><mo stretchy="false">^</mo></mover></mrow><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>,</mo><mspace width="1em" /><mspace width="1em" /><msup><mi>z</mi><mrow><mn>2</mn><mo>,</mo><mi>t</mi></mrow></msup><mo>=</mo><mrow><mo stretchy="false">(</mo><msup><mrow><mover accent="true"><mi>x</mi><mo stretchy="false">~</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><mi>t</mi><mo>,</mo><msup><mrow><mover accent="true"><mi>y</mi><mo stretchy="false">~</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mi>y</mi><mo stretchy="false">^</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><msup><mi>z</mi><mrow><mn>3</mn><mo>,</mo><mi>t</mi></mrow></msup><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mrow><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><msup><mrow><mover accent="true"><mi>x</mi><mo stretchy="false">~</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><mn>1</mn><mo>,</mo><msup><mrow><mover accent="true"><mi>y</mi><mo stretchy="false">~</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mi>y</mi><mo stretchy="false">^</mo></mover></mrow><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>,</mo><mspace width="1em" /><mspace width="1em" /><msup><mi>z</mi><mrow><mn>4</mn><mo>,</mo><mi>t</mi></mrow></msup><mo>=</mo><mrow><mo stretchy="false">(</mo><msup><mrow><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mi>x</mi><mo stretchy="false">~</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><mi>t</mi><mo>,</mo><msup><mrow><mover accent="true"><mi>y</mi><mo stretchy="false">^</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mi>y</mi><mo stretchy="false">~</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><mo>.</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><msup><mi>z</mi><mrow><mn>5</mn><mo>,</mo><mi>t</mi></mrow></msup><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mrow><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><msup><mrow><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mi>x</mi><mo stretchy="false">~</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><mn>1</mn><mo>,</mo><msup><mrow><mover accent="true"><mi>y</mi><mo stretchy="false">^</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mi>y</mi><mo stretchy="false">~</mo></mover></mrow><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>,</mo><mspace width="1em" /><mspace width="1em" /><msup><mi>z</mi><mrow><mn>6</mn><mo>,</mo><mi>t</mi></mrow></msup><mo>=</mo><mrow><mo stretchy="false">(</mo><msup><mrow><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><mi>t</mi><mo>,</mo><msup><mrow><mover accent="true"><mi>x</mi><mo stretchy="false">~</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mi>y</mi><mo stretchy="false">^</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><mn>1</mn><mo>,</mo><msup><mrow><mover accent="true"><mi>y</mi><mo stretchy="false">~</mo></mover></mrow><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><msup><mi>z</mi><mrow><mn>7</mn><mo>,</mo><mi>t</mi></mrow></msup><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mrow><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><mn>2</mn><mi>t</mi><mo>,</mo><mn>2</mn><mi>t</mi><mo>,</mo><mn>1</mn><mo>,</mo><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac><mo stretchy="false">)</mo></mrow><mo>,</mo><mspace width="1em" /><mspace width="1em" /><msup><mi>z</mi><mrow><mn>8</mn><mo>,</mo><mi>t</mi></mrow></msup><mo>=</mo><mrow><mo stretchy="false">(</mo><mn>2</mn><mi>t</mi><mo>,</mo><mi>t</mi><mo>,</mo><mn>2</mn><mi>t</mi><mo>,</mo><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mn>1</mn><mo>,</mo><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><msup><mi>z</mi><mrow><mn>9</mn><mo>,</mo><mi>t</mi></mrow></msup><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mrow><mo stretchy="false">(</mo><mn>2</mn><mi>t</mi><mo>,</mo><mn>2</mn><mi>t</mi><mo>,</mo><mi>t</mi><mo>,</mo><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><mo>,</mo><mspace width="1em" /><msup><mi>z</mi><mrow><mn>10</mn><mo>,</mo><mi>t</mi></mrow></msup><mo>=</mo><mrow><mo stretchy="false">(</mo><mfrac bevelled="true"><mrow><mn>3</mn><mi>t</mi></mrow><mn>2</mn></mfrac><mo>,</mo><mfrac bevelled="true"><mrow><mn>3</mn><mi>t</mi></mrow><mn>2</mn></mfrac><mo>,</mo><mfrac bevelled="true"><mrow><mn>3</mn><mi>t</mi></mrow><mn>2</mn></mfrac><mo>,</mo><mfrac bevelled="true"><mn>2</mn><mn>3</mn></mfrac><mo>,</mo><mfrac bevelled="true"><mn>2</mn><mn>3</mn></mfrac><mo>,</mo><mfrac bevelled="true"><mn>2</mn><mn>3</mn></mfrac><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
where
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msup><mrow><mover accent="true"><mi>x</mi><mo stretchy="false">~</mo></mover></mrow><mi>t</mi></msup><mo>=</mo><mfrac><mrow><mi>t</mi><mo>+</mo><mn>1</mn><mo>+</mo><msqrt><mrow><mn>1</mn><mo>-</mo><mn>2</mn><mi>t</mi><mo>-</mo><mn>3</mn><msup><mi>t</mi><mn>2</mn></msup></mrow></msqrt></mrow><mn>2</mn></mfrac><mo>,</mo><mspace width="1em" /><msup><mrow><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover></mrow><mi>t</mi></msup><mo>=</mo><mfrac><mrow><msup><mrow><mover accent="true"><mi>x</mi><mo stretchy="false">~</mo></mover></mrow><mi>t</mi></msup><mi>t</mi></mrow><mrow><msup><mrow><mover accent="true"><mi>x</mi><mo stretchy="false">~</mo></mover></mrow><mi>t</mi></msup><mo>-</mo><mi>t</mi></mrow></mfrac><mo>,</mo><mspace width="1em" /><msup><mrow><mover accent="true"><mi>y</mi><mo stretchy="false">~</mo></mover></mrow><mi>t</mi></msup><mo>=</mo><mfrac><mi>t</mi><msup><mrow><mover accent="true"><mi>x</mi><mo stretchy="false">~</mo></mover></mrow><mi>t</mi></msup></mfrac><mo>,</mo><mspace width="1em" /><msup><mrow><mover accent="true"><mi>y</mi><mo stretchy="false">^</mo></mover></mrow><mi>t</mi></msup><mo>=</mo><mfrac><mi>t</mi><msup><mrow><mover accent="true"><mi>x</mi><mo stretchy="false">^</mo></mover></mrow><mi>t</mi></msup></mfrac><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
For every minimizer of the underlying CCOP there exist at least two sequences of Karush–Kuhn–Tucker points of the Scholtes-type regularization (2), which approximate the corresponding S-stationary points of the continuous reformulation (1), i.e.
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msup><mi>z</mi><mrow><mn>1</mn><mo>,</mo><mi>t</mi></mrow></msup><mo>,</mo><msup><mi>z</mi><mrow><mn>2</mn><mo>,</mo><mi>t</mi></mrow></msup><mo stretchy="false">→</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><msup><mi>z</mi><mrow><mn>3</mn><mo>,</mo><mi>t</mi></mrow></msup><mo>,</mo><msup><mi>z</mi><mrow><mn>4</mn><mo>,</mo><mi>t</mi></mrow></msup><mo stretchy="false">→</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><msup><mi>z</mi><mrow><mn>5</mn><mo>,</mo><mi>t</mi></mrow></msup><mo>,</mo><msup><mi>z</mi><mrow><mn>6</mn><mo>,</mo><mi>t</mi></mrow></msup><mo stretchy="false">→</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
For the saddle point of CCOP there exist at least four sequences of Karush–Kuhn–Tucker points of the Scholtes-type regularization (2), which approximate the corresponding S-stationary points of the continuous reformulation (1), i.e.
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msup><mi>z</mi><mrow><mn>7</mn><mo>,</mo><mi>t</mi></mrow></msup><mo stretchy="false">→</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac><mo stretchy="false">)</mo></mrow><mo>,</mo><mspace width="1em" /><mspace width="1em" /><msup><mi>z</mi><mrow><mn>8</mn><mo>,</mo><mi>t</mi></mrow></msup><mo stretchy="false">→</mo><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mn>1</mn><mo>,</mo><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><msup><mi>z</mi><mrow><mn>9</mn><mo>,</mo><mi>t</mi></mrow></msup><mo stretchy="false">→</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><mo>,</mo><mspace width="1em" /><mspace width="1em" /><msup><mi>z</mi><mrow><mn>10</mn><mo>,</mo><mi>t</mi></mrow></msup><mo stretchy="false">→</mo><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mfrac bevelled="true"><mn>2</mn><mn>3</mn></mfrac><mo>,</mo><mfrac bevelled="true"><mn>2</mn><mn>3</mn></mfrac><mo>,</mo><mfrac bevelled="true"><mn>2</mn><mn>3</mn></mfrac><mo stretchy="false">)</mo></mrow><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
We list M-, S-stationary, and Karush–Kuhn–Tucker points in Table 1.
Table 1 M-, S-stationary, and Karush–Kuhn–Tucker points
<table frame="hsides" rules="groups"><thead><tr><th align="left"><p>M-stationary for CCOP</p></th><th align="left"><p>S-stationary for (1)</p></th><th align="left"><p>Karush–Kuhn–Tucker points for (2)</p></th></tr></thead><tbody><tr><td align="left"><p>(1, 0, 0)</p></td><td align="left"><p>(1, 0, 0, 0, 1, 1)</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup xmlns=""><mi>z</mi><mrow><mn>1</mn><mo>,</mo><mi>t</mi></mrow></msup></math><inline-graphic mime-subtype="GIF" href="10107_2024_2082_Article_IEq413.gif" />, <math xmlns="http://www.w3.org/1998/Math/MathML"><msup xmlns=""><mi>z</mi><mrow><mn>2</mn><mo>,</mo><mi>t</mi></mrow></msup></math><inline-graphic mime-subtype="GIF" href="10107_2024_2082_Article_IEq414.gif" /></p></td></tr><tr><td align="left"><p>(0, 1, 0)</p></td><td align="left"><p>(0, 1, 0, 1, 0, 1)</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup xmlns=""><mi>z</mi><mrow><mn>3</mn><mo>,</mo><mi>t</mi></mrow></msup></math><inline-graphic mime-subtype="GIF" href="10107_2024_2082_Article_IEq415.gif" />, <math xmlns="http://www.w3.org/1998/Math/MathML"><msup xmlns=""><mi>z</mi><mrow><mn>4</mn><mo>,</mo><mi>t</mi></mrow></msup></math><inline-graphic mime-subtype="GIF" href="10107_2024_2082_Article_IEq416.gif" /></p></td></tr><tr><td align="left"><p>(0, 0, 1)</p></td><td align="left"><p>(0, 0, 1, 1, 1, 0)</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup xmlns=""><mi>z</mi><mrow><mn>5</mn><mo>,</mo><mi>t</mi></mrow></msup></math><inline-graphic mime-subtype="GIF" href="10107_2024_2082_Article_IEq417.gif" />, <math xmlns="http://www.w3.org/1998/Math/MathML"><msup xmlns=""><mi>z</mi><mrow><mn>6</mn><mo>,</mo><mi>t</mi></mrow></msup></math><inline-graphic mime-subtype="GIF" href="10107_2024_2082_Article_IEq418.gif" /></p></td></tr><tr><td align="left" rowspan="4"><p>(0, 0, 0)</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac><mo stretchy="false">)</mo></mrow></math><inline-graphic mime-subtype="GIF" href="10107_2024_2082_Article_IEq419.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup xmlns=""><mi>z</mi><mrow><mn>7</mn><mo>,</mo><mi>t</mi></mrow></msup></math><inline-graphic mime-subtype="GIF" href="10107_2024_2082_Article_IEq420.gif" /></p></td></tr><tr><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mn>1</mn><mo>,</mo><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac><mo stretchy="false">)</mo></mrow></math><inline-graphic mime-subtype="GIF" href="10107_2024_2082_Article_IEq421.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup xmlns=""><mi>z</mi><mrow><mn>8</mn><mo>,</mo><mi>t</mi></mrow></msup></math><inline-graphic mime-subtype="GIF" href="10107_2024_2082_Article_IEq422.gif" /></p></td></tr><tr><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mfrac bevelled="true"><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></math><inline-graphic mime-subtype="GIF" href="10107_2024_2082_Article_IEq423.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup xmlns=""><mi>z</mi><mrow><mn>9</mn><mo>,</mo><mi>t</mi></mrow></msup></math><inline-graphic mime-subtype="GIF" href="10107_2024_2082_Article_IEq424.gif" /></p></td></tr><tr><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mfrac bevelled="true"><mn>2</mn><mn>3</mn></mfrac><mo>,</mo><mfrac bevelled="true"><mn>2</mn><mn>3</mn></mfrac><mo>,</mo><mfrac bevelled="true"><mn>2</mn><mn>3</mn></mfrac><mo stretchy="false">)</mo></mrow></math><inline-graphic mime-subtype="GIF" href="10107_2024_2082_Article_IEq425.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup xmlns=""><mi>z</mi><mrow><mn>10</mn><mo>,</mo><mi>t</mi></mrow></msup></math><inline-graphic mime-subtype="GIF" href="10107_2024_2082_Article_IEq426.gif" /></p></td></tr></tbody></table>
Let us apply our results to the given CCOP. In view of Theorem 1a), we know that the regularized continuous reformulation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> has in total five T-stationary points, all of them being nondegenerate. Three of them are minimizers and two of them are saddle points of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> . Also, we know from Remark 3 that all of them fulfill NDT6. Due to Theorem 3, any convergent sequence of Karush–Kuhn–Tucker points of the Scholtes-type regularization <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> converges to one of these T-stationary points of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> . We apply Theorem 5 to conclude that for any fixed t sufficiently small there are exactly five Karush–Kuhn–Tucker points of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> . All of them are nondegenerate. Three of them are minimizers and two of them are saddle points of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> . Overall, not only the global structure of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> is more accessible than that of (1), but also the global structure of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> is more accessible than that of (2). This shows the advantage of our approach in comparison to the existing literature, at least for the presented example. <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>□</mo></math>
Conclusions
In [[9]], the number of saddle points for the regularized continuous reformulation of CCOP has been estimated. Namely, each saddle point of CCOP generates exponentially many saddle points of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math> , all of them having the same index. It has been concluded there that the introduction of auxiliary y-variables shifts the complexity of dealing with the cardinality constraint in CCOP into the appearance of multiple saddle points for its continuous reformulation. From our extended convergence analysis of the Scholtes-type regularization it follows that the number of its saddle points also grows exponentially as compared to that of CCOP. We emphasize that this issue is at the core of numerical difficulties if solving CCOP up to global optimality by means of the Scholtes-type regularization method. To the best of our knowledge this is the first paper studying convergence properties of the Scholtes-type regularization method in the vicinity of saddle points, rather than of minimizers. The ideas from our analysis can be potentially applied not only for classes of nonsmooth optimization problems, such as MPCC, MPVC, MPSC, and MPOC, but also for other regularization schemes known from the literature.
Acknowledgements
The authors would like to thank the anonymous referees for suggesting valuable improvements of the paper.
Funding
Open Access funding enabled and organized by Projekt DEAL.
Declarations
Conflict of interest
The authors have no relevant financial or non-financial interests to disclose.
Appendix
Proof of Theorem 4
The proof will be divided into 4 major steps.
-
<bold> Step 1a. </bold> We rewrite the tangent space corresponding to the Karush–Kuhn–Tucker point
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></math>
Graph
- . For that, we use Lemma 2a) which provides that the summation constraint is active:
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mi mathvariant="script">S</mi></msubsup><mo>=</mo><mfenced close="}" open="{"><mi>ξ</mi><mo>∈</mo><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><mrow><mtable><mtr><mtd columnalign="left"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi>D</mi><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>p</mi><mo>∈</mo><mi>P</mi><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi>D</mi><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><mi>e</mi></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub><mo>,</mo><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><mi mathvariant="script">H</mi><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>∩</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub><mo>,</mo><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><mi mathvariant="script">H</mi><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>∩</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub><mo>,</mo><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><mi mathvariant="script">H</mi><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>∩</mo><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><mi mathvariant="script">N</mi><mfenced close=")" open="("><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></mtd></mtr></mtable></mrow></mfenced></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- In total there are, due to LICQ,
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msubsup><mi>α</mi><mi>t</mi><mi mathvariant="script">S</mi></msubsup><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mfenced close="|" open="|"><mi>P</mi></mfenced><mo>+</mo><mfenced close="|" open="|"><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced></mfenced><mo>+</mo><mn>1</mn><mo>+</mo><mfenced close="|" open="|"><mi mathvariant="script">E</mi><mfenced close=")" open="("><msup><mi>y</mi><mi>t</mi></msup></mfenced></mfenced><mo>+</mo><mfenced close="|" open="|"><mi mathvariant="script">H</mi><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>∩</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mfenced></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mrow /></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mo>+</mo><mfenced close="|" open="|"><mi mathvariant="script">H</mi><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>∩</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mfenced><mo>+</mo><mfenced close="|" open="|"><mi mathvariant="script">H</mi><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>∩</mo><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mfenced><mo>+</mo><mfenced close="|" open="|"><mi mathvariant="script">N</mi><mfenced close=")" open="("><msup><mi>y</mi><mi>t</mi></msup></mfenced></mfenced></mrow></mtd></mtr></mtable></mrow></math>
Graph
- linearly independent vectors involved. We use Lemma 3a) and 3b) to substitute
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close="|" open="|"><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced></mfenced></math>
Graph
• with
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close="|" open="|"><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mfenced></math>
Graph
• and
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close="|" open="|"><mi mathvariant="script">E</mi><mfenced close=")" open="("><msup><mi>y</mi><mi>t</mi></msup></mfenced></mfenced></math>
Graph
• with
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close="|" open="|"><mi mathvariant="script">E</mi><mfenced close=")" open="("><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mfenced></math>
Graph
- , respectively. The latter set has cardinality of
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>n</mi><mo>-</mo><mi>s</mi><mo>-</mo><mn>1</mn></mrow></math>
Graph
- due to Lemma 1c). Additionally, we use Lemma 3c) and 3d) to conclude:
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msubsup><mi>α</mi><mi>t</mi><mi mathvariant="script">S</mi></msubsup><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mfenced close="|" open="|"><mi>P</mi></mfenced><mo>+</mo><mfenced close="|" open="|"><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mfenced><mo>+</mo><mn>1</mn><mo>+</mo><mi>n</mi><mo>-</mo><mi>s</mi><mo>-</mo><mn>1</mn><mo>+</mo><mfenced close="|" open="|"><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mfenced></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mrow /></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mo>+</mo><mfenced close="|" open="|"><mi mathvariant="script">H</mi><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>∩</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mfenced><mo>+</mo><mfenced close="|" open="|"><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- Finally,
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mfenced close="|" open="|"><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mfenced><mo>+</mo><mfenced close="|" open="|"><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mfenced><mo>=</mo><mi>s</mi></mrow></math>
Graph
- , cf. Lemma 1b). Thus, we have:
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msubsup><mi>α</mi><mi>t</mi><mi mathvariant="script">S</mi></msubsup><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mfenced close="|" open="|"><mi>P</mi></mfenced><mo>+</mo><mfenced close="|" open="|"><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mfenced><mo>+</mo><mfenced close="|" open="|"><mi mathvariant="script">H</mi><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>∩</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mfenced><mo>+</mo><mi>n</mi><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
-
<bold> Step 1b. </bold> We examine the tangent space corresponding to the T-stationary point
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math>
Graph
- . For this purpose, we consider the following vectors from its definition:
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo><mspace width="1em" /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>∪</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo><mspace width="1em" /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mi>e</mi></mrow></mtd></mtr></mtable></mrow></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- The latter vector is involved due to Lemma 1a). The number of these vectors is due to Lemma 1c) equal to
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>-</mo><mi>s</mi><mo>-</mo><mn>1</mn><mo stretchy="false">)</mo><mo>+</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>=</mo><mi>n</mi></mrow></math>
Graph
- . Moreover, they are linearly independent due to MPOC-LICQ. Hence, we can write the respective tangent space as
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mi mathvariant="script">R</mi></msubsup><mo>=</mo><mfenced close="}" open="{"><mi>ξ</mi><mo>∈</mo><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><mrow><mtable><mtr><mtd columnalign="left"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi>D</mi><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>p</mi><mo>∈</mo><mi>P</mi><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi>D</mi><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msub><mi>e</mi><mi>i</mi></msub><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>∪</mo><msub><mi>a</mi><mn>01</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo><msub><mi>ξ</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><mo>...</mo><mo>=</mo><msub><mi>ξ</mi><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- In total there are, due to MPOC-LICQ,
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msup><mi>α</mi><mi mathvariant="script">R</mi></msup><mo>=</mo><mfenced close="|" open="|"><mi>P</mi></mfenced><mo>+</mo><mfenced close="|" open="|"><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mfenced><mo>+</mo><mfenced close="|" open="|"><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mfenced><mo>+</mo><mfenced close="|" open="|"><msub><mi>a</mi><mn>01</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mfenced><mo>+</mo><mi>n</mi></mrow></mtd></mtr></mtable></mrow></math>
Graph
- linearly independent vectors involved.
-
<bold> Step 2. </bold> Let
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="script">T</mi><mo>⊂</mo><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup></mrow></math>
Graph
- be a linear subspace. We denote the number of negative eigenvalues of
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>D</mi><mn>2</mn></msup><mspace width="0.166667em" /><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><msub><mo>↾</mo><mi mathvariant="script">T</mi></msub></mrow></math>
Graph
• by
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>Q</mi><msubsup><mi>I</mi><mrow><mi>t</mi><mo>,</mo><mi mathvariant="script">T</mi></mrow><mi mathvariant="script">S</mi></msubsup></mrow></math>
Graph
- . Analogously,
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>Q</mi><msubsup><mi>I</mi><mrow><mi>t</mi><mo>,</mo><mi mathvariant="script">T</mi></mrow><mi mathvariant="script">R</mi></msubsup></mrow></math>
Graph
- stands for the number of negative eigenvalues of
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>D</mi><mn>2</mn></msup><mspace width="0.166667em" /><msup><mi>L</mi><mi mathvariant="script">R</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><msub><mo>↾</mo><mi mathvariant="script">T</mi></msub></mrow></math>
Graph
• and
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mover><mrow><mi mathvariant="italic">QI</mi></mrow><mo>¯</mo></mover><mi mathvariant="script">T</mi><mi mathvariant="script">R</mi></msubsup></math>
Graph
- stands for the number of negative eigenvalues of
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>D</mi><mn>2</mn></msup><mspace width="0.166667em" /><msup><mi>L</mi><mi mathvariant="script">R</mi></msup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><msub><mo>↾</mo><mi mathvariant="script">T</mi></msub></mrow></math>
Graph
- . We have the following relation between the involved Hessians of the Lagrange functions by denoting
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>E</mi><mrow><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow><mo>=</mo><msub><mi>e</mi><mi>i</mi></msub><msubsup><mi>e</mi><mrow><mi>n</mi><mo>+</mo><mi>i</mi></mrow><mi>T</mi></msubsup><mo>+</mo><msub><mi>e</mi><mrow><mi>n</mi><mo>+</mo><mi>i</mi></mrow></msub><msubsup><mi>e</mi><mi>i</mi><mi>T</mi></msubsup></mrow></math>
Graph
• ,
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>n</mi></mrow></math>
Graph
• : 14
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mstyle displaystyle="true" scriptlevel="0"><mrow><msup><mi>D</mi><mn>2</mn></msup><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>=</mo></mrow></mstyle></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><msup><mi>D</mi><mn>2</mn></msup><msup><mi>L</mi><mi mathvariant="script">R</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></munder><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><mi>E</mi><mrow><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></munder><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup><mi>E</mi><mrow><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow><mo>.</mo></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd></mtr></mtable></mrow></math>
Graph
-
<bold> Step 2a. </bold> It holds for t sufficiently small:
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mi>Q</mi><msubsup><mi>I</mi><mrow><mi>t</mi><mo>,</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup></mrow><mi mathvariant="script">S</mi></msubsup><mo>=</mo><msubsup><mover><mrow><mi mathvariant="italic">QI</mi></mrow><mo>¯</mo></mover><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup><mi mathvariant="script">R</mi></msubsup><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- Indeed, by using (14), we derive for any
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>ξ</mi><mo>∈</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup></mrow></math>
Graph
• : 15
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msup><mi>ξ</mi><mi>T</mi></msup><msup><mi>D</mi><mn>2</mn></msup><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mi>ξ</mi><mo>=</mo></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><msup><mi>ξ</mi><mi>T</mi></msup><msup><mi>D</mi><mn>2</mn></msup><msup><mi>L</mi><mi mathvariant="script">R</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mi>ξ</mi><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></munder><mn>2</mn><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><msub><mi>ξ</mi><mi>i</mi></msub><msub><mi>ξ</mi><mrow><mi>n</mi><mo>+</mo><mi>i</mi></mrow></msub></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mrow /></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></munder><mn>2</mn><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup><msub><mi>ξ</mi><mi>i</mi></msub><msub><mi>ξ</mi><mrow><mi>n</mi><mo>+</mo><mi>i</mi></mrow></msub><mo>=</mo><msup><mi>ξ</mi><mi>T</mi></msup><msup><mi>D</mi><mn>2</mn></msup><msup><mi>L</mi><mi mathvariant="script">R</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mi>ξ</mi><mo>,</mo></mrow></mstyle></mtd></mtr></mtable></mrow></math>
Graph
• since
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>ξ</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><mo>...</mo><mo>=</mo><msub><mi>ξ</mi><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math>
Graph
- as seen in Step 1b. Hence, we get
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>Q</mi><msubsup><mi>I</mi><mrow><mi>t</mi><mo>,</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup></mrow><mi mathvariant="script">S</mi></msubsup><mo>=</mo><mi>Q</mi><msubsup><mi>I</mi><mrow><mi>t</mi><mo>,</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup></mrow><mi mathvariant="script">R</mi></msubsup></mrow></math>
Graph
- . Due to NDT4, continuity arguments provide
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>Q</mi><msubsup><mi>I</mi><mrow><mi>t</mi><mo>,</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup></mrow><mi mathvariant="script">R</mi></msubsup><mo>=</mo><msubsup><mover><mrow><mi mathvariant="italic">QI</mi></mrow><mo>¯</mo></mover><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup><mi mathvariant="script">R</mi></msubsup></mrow></math>
Graph
• .
-
<bold> Step 2b. </bold> We claim that the numbers of positive and negative eigenvalues of
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>D</mi><mn>2</mn></msup><mspace width="0.166667em" /><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><msub><mo>↾</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup></msub></mrow></math>
Graph
• and of
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>D</mi><mn>2</mn></msup><mspace width="0.166667em" /><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><msub><mo>↾</mo><msup><mrow><mi mathvariant="script">T</mi></mrow><mo>′</mo></msup></msub></mrow></math>
Graph
- , respectively, coincide, where
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msup><mrow><mi mathvariant="script">T</mi></mrow><mo>′</mo></msup><mo>=</mo><mfenced close="}" open="{"><mi>ξ</mi><mo>∈</mo><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><mrow><mtable><mtr><mtd columnalign="left"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi>D</mi><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>p</mi><mo>∈</mo><mi>P</mi><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi>D</mi><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><mi>e</mi></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msub><mi>e</mi><mi>i</mi></msub><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub><mo>,</mo><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>∪</mo><msub><mi>a</mi><mn>10</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr></mtable></mrow></mfenced></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
• Let
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close="}" open="{"><msubsup><mi>λ</mi><mn>1</mn><mo>+</mo></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>λ</mi><msup><mi>k</mi><mo>+</mo></msup><mo>+</mo></msubsup></mfenced></math>
Graph
- be the positive eigenvalues of
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>D</mi><mn>2</mn></msup><mspace width="0.166667em" /><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><msub><mo>↾</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup></msub></mrow></math>
Graph
- with corresponding eigenvectors
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close="}" open="{"><msubsup><mi>ξ</mi><mn>1</mn><mo>+</mo></msubsup><mo>,</mo><mo>...</mo><mo>,</mo><msubsup><mi>ξ</mi><msup><mi>k</mi><mo>+</mo></msup><mo>+</mo></msubsup></mfenced></math>
Graph
- . Hence, for all
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>...</mo><mo>,</mo><msup><mi>k</mi><mo>+</mo></msup></mrow></math>
Graph
• :
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msup><mrow><msubsup><mi>ξ</mi><mi>k</mi><mo>+</mo></msubsup></mrow><mi>T</mi></msup><msup><mi>D</mi><mn>2</mn></msup><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><msubsup><mi>ξ</mi><mi>k</mi><mo>+</mo></msubsup><mo>></mo><mn>0</mn><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- We rewrite the tangent space
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup><mo>=</mo><mfenced close="}" open="{"><mi>ξ</mi><mo>∈</mo><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><mrow><mtable><mtr><mtd columnalign="left"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi>D</mi><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>p</mi><mo>∈</mo><mi>P</mi><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi>D</mi><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><mi>e</mi></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msub><mi>e</mi><mi>i</mi></msub><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><msub><mi>e</mi><mi>i</mi></msub><mo>,</mo><msub><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>∪</mo><msub><mi>a</mi><mn>10</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr></mtable></mrow></mfenced></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- Due to MPOC-LICQ, the application of the implicit function theorem provides the existence of
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>δ</mi><mn>2</mn></msub><mo>,</mo><msub><mi>δ</mi><mn>3</mn></msub><mo>></mo><mn>0</mn></mrow></math>
Graph
- such that for all
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>...</mo><mo>,</mo><msup><mi>k</mi><mo>+</mo></msup></mrow></math>
Graph
• and
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mo><</mo><msub><mi>δ</mi><mn>2</mn></msub></mrow></math>
Graph
- there exists
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>ξ</mi><mrow><mi>k</mi><mo>,</mo><mi>t</mi></mrow></msub></math>
Graph
• with
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mfenced close="∥" open="∥"><msub><mi>ξ</mi><mrow><mi>k</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>-</mo><msubsup><mi>ξ</mi><mi>k</mi><mo>+</mo></msubsup></mfenced><mo><</mo><msub><mi>δ</mi><mn>3</mn></msub></mrow></math>
Graph
• and
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>ξ</mi><mrow><mi>k</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>∈</mo><msup><mrow><mi mathvariant="script">T</mi></mrow><mo>′</mo></msup></mrow></math>
Graph
- . We can choose t even smaller, such that
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>ξ</mi><mrow><mn>1</mn><mo>,</mo><mi>t</mi></mrow></msub><mo>,</mo><mo>...</mo><mo>,</mo><msub><mi>ξ</mi><mrow><msup><mi>k</mi><mo>+</mo></msup><mo>,</mo><mi>t</mi></mrow></msub></mrow></math>
Graph
- remain linearly independent and for all
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>...</mo><mo>,</mo><msup><mi>k</mi><mo>+</mo></msup></mrow></math>
Graph
- it holds:
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msup><mrow><msub><mi>ξ</mi><mrow><mi>k</mi><mo>,</mo><mi>t</mi></mrow></msub></mrow><mi>T</mi></msup><msup><mi>D</mi><mn>2</mn></msup><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><msub><mi>ξ</mi><mrow><mi>k</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>></mo><mn>0</mn><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
• Hence,
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>D</mi><mn>2</mn></msup><mspace width="0.166667em" /><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><msub><mo>↾</mo><msup><mrow><mi mathvariant="script">T</mi></mrow><mo>′</mo></msup></msub></mrow></math>
Graph
- has at least
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>k</mi><mo>+</mo></msup></math>
Graph
- positive eigenvalues. If we repeat the above reasoning for negative eigenvalues, the matrix
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>D</mi><mn>2</mn></msup><mspace width="0.166667em" /><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><msub><mo>↾</mo><msup><mrow><mi mathvariant="script">T</mi></mrow><mo>′</mo></msup></msub></mrow></math>
Graph
- has at least as many negative eigenvalues as
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>D</mi><mn>2</mn></msup><mspace width="0.166667em" /><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><msub><mo>↾</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup></msub></mrow></math>
Graph
- . Additionally, we show that the dimensions of
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup></math>
Graph
• and
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mrow><mi mathvariant="script">T</mi></mrow><mo>′</mo></msup></math>
Graph
- coincide. By Step 1b, we have
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>2</mn><mi>n</mi><mo>-</mo><msup><mi>α</mi><mi mathvariant="script">R</mi></msup></mrow></math>
Graph
- for the dimension of
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup></math>
Graph
- . Since MPOC-LICQ remains valid in the neighborhood of
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math>
Graph
- , we get again
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>2</mn><mi>n</mi><mo>-</mo><msup><mi>α</mi><mi mathvariant="script">R</mi></msup></mrow></math>
Graph
- for the dimension of
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mrow><mi mathvariant="script">T</mi></mrow><mo>′</mo></msup></math>
Graph
- . By continuity arguments, NDT4 and (15) provide that
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>D</mi><mn>2</mn></msup><mspace width="0.166667em" /><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><msub><mo>↾</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup></msub></mrow></math>
Graph
- is nonsingular. Altogether, the assertion follows.
-
<bold> Step 2c. </bold> We claim that
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mi>Q</mi><msubsup><mi>I</mi><mrow><mi>t</mi><mo>,</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mi mathvariant="script">S</mi></msubsup></mrow><mi mathvariant="script">S</mi></msubsup><mo>≤</mo><mi>Q</mi><msubsup><mi>I</mi><mrow><mi>t</mi><mo>,</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup></mrow><mi mathvariant="script">S</mi></msubsup><mo>+</mo><msup><mi>α</mi><mi mathvariant="script">R</mi></msup><mo>-</mo><msubsup><mi>α</mi><mi>t</mi><mi mathvariant="script">S</mi></msubsup><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- For that, we focus on the dimension of
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mi mathvariant="script">S</mi></msubsup></math>
Graph
- . As a consequence of Step 1a it is
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>2</mn><mi>n</mi><mo>-</mo><msubsup><mi>α</mi><mi>t</mi><mi mathvariant="script">S</mi></msubsup></mrow></math>
Graph
- . Due to continuity arguments, we can choose t small enough to ensure
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><mo>≠</mo><mn>0</mn></mrow></math>
Graph
• ,
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>10</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math>
Graph
• and
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup><mo>≠</mo><mn>0</mn></mrow></math>
Graph
• ,
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math>
Graph
- . Using this and Lemma 3a), 3b), and 3d), it follows that
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mrow><mi mathvariant="script">T</mi></mrow><mo>′</mo></msup><mo>⊂</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mi mathvariant="script">S</mi></msubsup></mrow></math>
Graph
- . Therefore, using Step 2b,
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>Q</mi><msubsup><mi>I</mi><mrow><mi>t</mi><mo>,</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mi mathvariant="script">S</mi></msubsup></mrow><mi mathvariant="script">S</mi></msubsup><mo>≤</mo><mn>2</mn><mi>n</mi><mo>-</mo><msubsup><mi>α</mi><mi>t</mi><mi mathvariant="script">S</mi></msubsup><mo>-</mo><msup><mi>k</mi><mo>+</mo></msup></mrow></math>
Graph
- . We observe in view of NDT4 and Step 1b that
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>Q</mi><msubsup><mi>I</mi><mrow><mi>t</mi><mo>,</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup></mrow><mi mathvariant="script">S</mi></msubsup><mo>=</mo><mn>2</mn><mi>n</mi><mo>-</mo><msup><mi>α</mi><mi mathvariant="script">R</mi></msup><mo>-</mo><msup><mi>k</mi><mo>+</mo></msup></mrow></math>
Graph
- . The assertion follows immediately.
-
<bold> Step 3. </bold> Let us show that
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mo movablelimits="true">max</mo><mfenced close="}" open="{"><mi>m</mi><mo>-</mo><mfenced close="|" open="|"><mfenced close="}" open="{"><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>=</mo><mn>0</mn></mfenced></mfenced></mfenced><mo>,</mo><mn>0</mn></mfenced><mo>≤</mo><mi>T</mi><mi>I</mi><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- In view of Step 2a, Step 2c, and due to continuity, we have for t sufficiently small:
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mi>m</mi><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mi>Q</mi><msubsup><mi>I</mi><mrow><mi>t</mi><mo>,</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mi mathvariant="script">S</mi></msubsup></mrow><mi mathvariant="script">S</mi></msubsup><mover><mo>≤</mo><mrow><mi>S</mi><mi>t</mi><mi>e</mi><mi>p</mi><mspace width="0.166667em" /><mn>2</mn><mi>c</mi></mrow></mover><mi>Q</mi><msubsup><mi>I</mi><mrow><mi>t</mi><mo>,</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup></mrow><mi mathvariant="script">S</mi></msubsup><mo>+</mo><msup><mi>α</mi><mi mathvariant="script">R</mi></msup><mo>-</mo><msubsup><mi>α</mi><mi>t</mi><mi mathvariant="script">S</mi></msubsup><mover><mo>=</mo><mrow><mi>S</mi><mi>t</mi><mi>e</mi><mi>p</mi><mspace width="0.166667em" /><mn>2</mn><mi>a</mi></mrow></mover><msubsup><mover><mrow><mi mathvariant="italic">QI</mi></mrow><mo>¯</mo></mover><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup><mi mathvariant="script">R</mi></msubsup><mo>+</mo><msup><mi>α</mi><mi mathvariant="script">R</mi></msup><mo>-</mo><msubsup><mi>α</mi><mi>t</mi><mi mathvariant="script">S</mi></msubsup></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mrow /></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mover><mo>=</mo><mrow><mi>S</mi><mi>t</mi><mi>e</mi><mi>p</mi><mspace width="0.166667em" /><mn>1</mn></mrow></mover><mspace width="4pt" /><msubsup><mover><mrow><mi mathvariant="italic">QI</mi></mrow><mo>¯</mo></mover><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup><mi mathvariant="script">R</mi></msubsup><mo>+</mo><mfenced close="|" open="|"><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mfenced><mo>+</mo><mfenced close="|" open="|"><msub><mi>a</mi><mn>01</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mfenced></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mrow /></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mo>-</mo><mfenced close="|" open="|"><mi mathvariant="script">H</mi><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>∩</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mfenced></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mi>T</mi><mi>I</mi><mo>+</mo><mfenced close="|" open="|"><msub><mi>a</mi><mn>01</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mfenced><mo>-</mo><mfenced close="|" open="|"><mi mathvariant="script">H</mi><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>∩</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- We show for t sufficiently small:
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfenced close="|" open="|"><msub><mi>a</mi><mn>01</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mfenced><mo>-</mo><mfenced close="|" open="|"><mi mathvariant="script">H</mi><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>∩</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mfenced><mo>≤</mo><mfenced close="|" open="|"><mfenced close="}" open="{"><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>=</mo><mn>0</mn></mfenced></mfenced></mfenced><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- and the assertion will follow immediately since
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>T</mi><mi>I</mi><mo>≥</mo><mn>0</mn></mrow></math>
Graph
- . Clearly,
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfenced close="|" open="|"><msub><mi>a</mi><mn>01</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mfenced><mo>-</mo><mfenced close="|" open="|"><mi mathvariant="script">H</mi><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>∩</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mfenced><mo>=</mo><mfenced close="|" open="|"><msub><mi>a</mi><mn>01</mn></msub><mrow><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo stretchy="true">\</mo><mi mathvariant="script">H</mi></mrow><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
• Suppose
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math>
Graph
• with
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo>≠</mo><mn>0</mn></mrow></math>
Graph
- . In view of Remark 1, the difference
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>η</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><mo>-</mo><msubsup><mi>η</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup></mrow></math>
Graph
- cannot vanish for all t sufficiently small. In particular, one of the multipliers
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>η</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup></math>
Graph
• or
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>η</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup></math>
Graph
- has to be not vanishing for all t sufficiently small. Hence,
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><mi mathvariant="script">H</mi><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math>
Graph
- . We therefore have:
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>a</mi><mn>01</mn></msub><mrow><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo stretchy="true">\</mo><mi mathvariant="script">H</mi></mrow><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>⊂</mo><mfenced close="}" open="{"><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>=</mo><mn>0</mn></mfenced></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
-
<bold> Step 4. </bold> Without loss of generality—considering subsequences if needed—we can assume that for any
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math>
Graph
- at least one of the sequences
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup></mfrac></math>
Graph
• or
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup></mfrac></math>
Graph
- is convergent. First, we note that the quotients are well defined due to Lemma 3c). Moreover, if the former sequence does not contain a convergent subsequence, we find a subsequence that tends to plus or minus infinity. Consequently, the corresponding subsequence of the latter reciprocal sequence has to converge to zero. We define the following auxiliary sets:
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msubsup><mi>a</mi><mrow><mn>00</mn></mrow><mi>x</mi></msubsup><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mfenced close="}" open="{"><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><mfrac><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup></mfrac><mspace width="0.333333em" /><mtext>converges</mtext><mspace width="0.333333em" /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mfenced></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><msubsup><mi>a</mi><mrow><mn>00</mn></mrow><mi>y</mi></msubsup><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><msub><mi>a</mi><mn>00</mn></msub><mrow><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo stretchy="true">\</mo></mrow><msubsup><mi>a</mi><mrow><mn>00</mn></mrow><mi>x</mi></msubsup><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
• For
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>00</mn></mrow><mi>x</mi></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math>
Graph
- we consider
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup></math>
Graph
- and replace two of the involved equations, namely
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msub><mi>e</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn></mrow></math>
Graph
• and
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><msub><mi>e</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn></mrow></math>
Graph
- by one equation
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msub><mi>e</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><mo>,</mo><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><mfrac><msubsup><mi>x</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup><msubsup><mi>y</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup></mfrac><msub><mi>e</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn></mrow></math>
Graph
- . Clearly, the vectors involved in the definition of the newly generated linear space, i.e.
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msup><mrow><mi mathvariant="script">T</mi></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msup><mo>=</mo><mfenced close="}" open="{"><mi>ξ</mi><mo>∈</mo><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><mrow><mtable><mtr><mtd columnalign="left"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi>D</mi><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>p</mi><mo>∈</mo><mi>P</mi><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi>D</mi><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><mi>e</mi></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msub><mi>e</mi><mi>i</mi></msub><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mrow><mo stretchy="true">\</mo><mrow><mo stretchy="false">{</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">}</mo></mrow><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo stretchy="true">\</mo></mrow><mrow><mo stretchy="false">{</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">}</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msub><mi>e</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><mo>,</mo><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><mfrac><msubsup><mi>x</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup><msubsup><mi>y</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup></mfrac><msub><mi>e</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><msub><mi>e</mi><mi>i</mi></msub><mo>,</mo><msub><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>∪</mo><msub><mi>a</mi><mn>10</mn></msub><mrow><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo stretchy="false">}</mo></mrow></mrow></mtd></mtr></mtable></mrow></mfenced></mfenced><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- remain linearly independent. The dimension of
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mrow><mi mathvariant="script">T</mi></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msup></math>
Graph
- is greater than the dimension of
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup></math>
Graph
- by one. Moreover, there exists
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>ξ</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msup><mo>∈</mo><msup><mrow><mi mathvariant="script">T</mi></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msup></mrow></math>
Graph
• with
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>ξ</mi><mrow><mi>n</mi><mo>+</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><mo>≠</mo><mn>0</mn></mrow></math>
Graph
- . Indeed, assume that no such
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>ξ</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msup></math>
Graph
- exists, then we can add the equation
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><msub><mi>e</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn></mrow></math>
Graph
- to the defining equations of
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mrow><mi mathvariant="script">T</mi></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msup></math>
Graph
- without changing it. The resulting space, however, is identical to
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup></math>
Graph
- , a contradiction. Without loss of generality, we assume
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>ξ</mi><mrow><mi>n</mi><mo>+</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><mo>=</mo><mn>1</mn></mrow></math>
Graph
- . Further, by straightforward application of the implicit function theorem and due to Lemma 3a) and 3b), we find a sequence of vectors
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>ξ</mi><mi>t</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><mo>∈</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mi>t</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup></mrow></math>
Graph
- that converges to
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>ξ</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msup></math>
Graph
• for
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></math>
Graph
- . For this, we define
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mi>t</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><mo>=</mo><mfenced close="}" open="{"><mi>ξ</mi><mo>∈</mo><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><mrow><mtable><mtr><mtd columnalign="left"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi>D</mi><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>p</mi><mo>∈</mo><mi>P</mi><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi>D</mi><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><mi>e</mi></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msub><mi>e</mi><mi>i</mi></msub><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mrow><mo stretchy="true">\</mo><mrow><mo stretchy="false">{</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">}</mo></mrow><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo stretchy="true">\</mo></mrow><mrow><mo stretchy="false">{</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">}</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msub><mi>e</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><mo>,</mo><mfrac><msubsup><mi>x</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup><msubsup><mi>y</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup></mfrac><msub><mi>e</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub><mo>,</mo><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>∪</mo><msub><mi>a</mi><mn>10</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr></mtable></mrow></mfenced></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- We again have, due to continuity arguments, that
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mi>n</mi><mo>+</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><mo>≠</mo><mn>0</mn></mrow></math>
Graph
• . For
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>00</mn></mrow><mi>y</mi></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math>
Graph
- we proceed analogously by considering
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup></math>
Graph
- again and replace two of the involved equations
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msub><mi>e</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn></mrow></math>
Graph
• and
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><msub><mi>e</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn></mrow></math>
Graph
- by the equation
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><mfrac><msubsup><mi>y</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup><msubsup><mi>x</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup></mfrac><msub><mi>e</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><mo>,</mo><msub><mi>e</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn></mrow></math>
Graph
- . By the same arguments as before, we find
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>ξ</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msup><mo>∈</mo><msup><mrow><mi mathvariant="script">T</mi></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msup></mrow></math>
Graph
• with
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>ξ</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><mo>≠</mo><mn>0</mn></mrow></math>
Graph
- . Again we will assume
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>ξ</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><mo>=</mo><mn>1</mn></mrow></math>
Graph
- and find a sequence of vectors
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>ξ</mi><mi>t</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><mo>∈</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mi>t</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup></mrow></math>
Graph
- that converges to
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>ξ</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msup></math>
Graph
• for
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></math>
Graph
- . Due to continuity, it holds then
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><mo>≠</mo><mn>0</mn></mrow></math>
Graph
• .
It is straightforward to verify the following observations for t sufficiently small:
- Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close="}" open="{"><msup><mi>ξ</mi><mrow><mo>′</mo><mo>,</mo><mn>1</mn></mrow></msup><mo>,</mo><mo>...</mo><mo>,</mo><msup><mi>ξ</mi><mrow><mo>′</mo><mo>,</mo><mi>ℓ</mi></mrow></msup></mfenced></math>
Graph
be a base of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mrow><mi mathvariant="script">T</mi></mrow><mo>′</mo></msup></math>
Graph
, cf. Step 2b, then <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mfenced close="}" open="{"><msup><mi>ξ</mi><mrow><mo>′</mo><mo>,</mo><mn>1</mn></mrow></msup><mo>,</mo><mo>...</mo><mo>,</mo><msup><mi>ξ</mi><mrow><mo>′</mo><mo>,</mo><mi>ℓ</mi></mrow></msup></mfenced><mo>∪</mo><mfenced close="}" open="{"><msubsup><mi>ξ</mi><mi>t</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mfenced></mfenced></mrow></math>
Graph
is a set of linear independent vectors. In fact, suppose for some coefficients <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>b</mi><mi>i</mi></msub><mo>∈</mo><mi mathvariant="double-struck">R</mi></mrow></math>
Graph
, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo><msub><mi>β</mi><mi>i</mi></msub><mo>∈</mo><mi mathvariant="double-struck">R</mi><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>ℓ</mi></mrow></math>
Graph
it holds:
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msub><mi>b</mi><mi>i</mi></msub><msubsup><mi>ξ</mi><mi>t</mi><mi>i</mi></msubsup><mo>+</mo><munderover><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>ℓ</mi></munderover><msub><mi>β</mi><mi>i</mi></msub><msup><mi>ξ</mi><mrow><mo>′</mo><mo>,</mo><mi>i</mi></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- For <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>00</mn></mrow><mi>x</mi></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math>
Graph
we consider the <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math>
Graph
-th row of this sum
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>b</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><munder><munder accentunder="true"><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mi>n</mi><mo>+</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><mo>⏟</mo></munder><mrow><mo>≠</mo><mn>0</mn></mrow></munder><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mrow><mo stretchy="true">\</mo></mrow><mfenced close="}" open="{"><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msub><mi>b</mi><mi>i</mi></msub><munder><munder accentunder="true"><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mi>n</mi><mo>+</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>i</mi></msubsup><mo>⏟</mo></munder><mrow><mo>=</mo><mn>0</mn></mrow></munder><mo>+</mo><munderover><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>ℓ</mi></munderover><msub><mi>β</mi><mi>i</mi></msub><munder><munder accentunder="true"><msubsup><mi>ξ</mi><mrow><mi>n</mi><mo>+</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mo>′</mo><mo>,</mo><mi>i</mi></mrow></msubsup><mo>⏟</mo></munder><mrow><mo>=</mo><mn>0</mn></mrow></munder><mo>=</mo><mn>0</mn><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- If instead <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>00</mn></mrow><mi>y</mi></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math>
Graph
we consider the <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math>
Graph
-th row of the sum
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>b</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><munder><munder accentunder="true"><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><mo>⏟</mo></munder><mrow><mo>≠</mo><mn>0</mn></mrow></munder><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mrow><mo stretchy="true">\</mo></mrow><mfenced close="}" open="{"><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msub><mi>b</mi><mi>i</mi></msub><munder><munder accentunder="true"><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>i</mi></msubsup><mo>⏟</mo></munder><mrow><mo>=</mo><mn>0</mn></mrow></munder><mo>+</mo><munderover><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>ℓ</mi></munderover><msub><mi>β</mi><mi>i</mi></msub><munder><munder accentunder="true"><msubsup><mi>ξ</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mo>′</mo><mo>,</mo><mi>i</mi></mrow></msubsup><mo>⏟</mo></munder><mrow><mo>=</mo><mn>0</mn></mrow></munder><mo>=</mo><mn>0</mn><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- Altogether, it must hold <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>b</mi><mi>i</mi></msub><mo>=</mo><mn>0</mn></mrow></math>
Graph
, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math>
Graph
. However, this implies
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><munderover><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>ℓ</mi></munderover><msub><mi>β</mi><mi>i</mi></msub><msup><mi>ξ</mi><mrow><mo>′</mo><mo>,</mo><mi>i</mi></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- Hence, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>β</mi><mi>i</mi></msub><mo>=</mo><mn>0</mn></mrow></math>
Graph
for <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>ℓ</mi></mrow></math>
Graph
.
- It holds <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>ξ</mi><mi>t</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><mo>∈</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mi mathvariant="script">S</mi></msubsup></mrow></math>
Graph
, cf. Step 1a, for any <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math>
Graph
.
- It holds <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mfenced close=")" open="("><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup><mo>-</mo><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup></mfenced><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mi>n</mi><mo>+</mo><mi>i</mi></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><mo>≤</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><mi mathvariant="script">H</mi><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math>
Graph
. Since <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>ξ</mi><mi>t</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><mo>∈</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mi mathvariant="script">S</mi></msubsup></mrow></math>
Graph
, we obtain:
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfenced close=")" open="("><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup><mo>-</mo><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup></mfenced><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mi>n</mi><mo>+</mo><mi>i</mi></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><mo>=</mo><mfenced close=")" open="("><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><mo>-</mo><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup></mfenced><msup><mfenced close=")" open="("><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mi>n</mi><mo>+</mo><mi>i</mi></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup></mfenced><mn>2</mn></msup><mfrac><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup></mfrac><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- If <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math>
Graph
, we have <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><mo><</mo><mn>0</mn><mo>,</mo><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup><mo>></mo><mn>0</mn></mrow></math>
Graph
and <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup><mo>=</mo><mn>0</mn></mrow></math>
Graph
. Moreover, due to ND2, we have <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><mo>></mo><mn>0</mn></mrow></math>
Graph
. The assertion follows immediately. The other case <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math>
Graph
is completely analogous.
- It holds <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><mfenced close=")" open="("><msubsup><mi>η</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup><mo>-</mo><msubsup><mi>η</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup></mfenced><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mi>n</mi><mo>+</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><mo>=</mo><mo>-</mo><mi>∞</mi></mrow></math>
Graph
. We calculate:
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfenced close=")" open="("><msubsup><mi>η</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup><mo>-</mo><msubsup><mi>η</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup></mfenced><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mi>n</mi><mo>+</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mfenced open="{"><mrow><mtable><mtr><mtd columnalign="left"><mrow><mfenced close=")" open="("><msubsup><mi>η</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><mo>-</mo><msubsup><mi>η</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup></mfenced><msup><mfenced close=")" open="("><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mi>n</mi><mo>+</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup></mfenced><mn>2</mn></msup><mfrac><msubsup><mi>x</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>t</mi></msubsup><msubsup><mi>y</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>t</mi></msubsup></mfrac></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>00</mn></mrow><mi>x</mi></msubsup><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><msubsup><mi>η</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><mo>-</mo><msubsup><mi>η</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup></mfenced><msup><mfenced close=")" open="("><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup></mfenced><mn>2</mn></msup><mfrac><msubsup><mi>y</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>t</mi></msubsup><msubsup><mi>x</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>t</mi></msubsup></mfrac></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>00</mn></mrow><mi>y</mi></msubsup><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>.</mo></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mtd></mtr></mtable></mrow></math>
Graph
- Let us suppose <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>00</mn></mrow><mi>x</mi></msubsup><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math>
Graph
. We have <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>y</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>t</mi></msubsup><mo>≠</mo><mn>0</mn></mrow></math>
Graph
and, thus, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>ν</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>t</mi></msubsup><mo>=</mo><mn>0</mn></mrow></math>
Graph
. We use Remark 1 and NDT3 to conclude that the sequence <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mfenced close=")" open="("><msubsup><mi>η</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><mo>-</mo><msubsup><mi>η</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup></mfenced><msubsup><mi>x</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>t</mi></msubsup></mrow></math>
Graph
converges to <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo><</mo><mn>0</mn></mrow></math>
Graph
for <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></math>
Graph
. Further, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mfrac><mn>1</mn><msubsup><mi>y</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>t</mi></msubsup></mfrac><mo>></mo><mn>0</mn></mrow></math>
Graph
tends to infinity for <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></math>
Graph
. Finally, <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced close=")" open="("><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mi>n</mi><mo>+</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup></mfenced><mn>2</mn></msup></math>
Graph
converges to 1 for <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></math>
Graph
, due to the construction of <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>ξ</mi><mi>t</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup></math>
Graph
. Thus, the assertion follows. Instead, let us suppose <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>00</mn></mrow><mi>y</mi></msubsup><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math>
Graph
. This time, we have that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced close=")" open="("><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup></mfenced><mn>2</mn></msup></math>
Graph
converges to 1 for <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></math>
Graph
. Due to Remark 1 and NDT3, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mfenced close=")" open="("><msubsup><mi>η</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><mo>-</mo><msubsup><mi>η</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup></mfenced><msubsup><mi>y</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>t</mi></msubsup></mrow></math>
Graph
converges to <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo>≠</mo><mn>0</mn></mrow></math>
Graph
for <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></math>
Graph
. If <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math>
Graph
, then <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub></math>
Graph
is positive from here. Also, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mfrac><mn>1</mn><msubsup><mi>x</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>t</mi></msubsup></mfrac><mo><</mo><mn>0</mn></mrow></math>
Graph
tends to minus infinity for <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></math>
Graph
. The other case <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math>
Graph
is completely analogous.
- We notice that <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="true" scriptlevel="0"><mrow><msubsup><mi>ξ</mi><mi>t</mi><msup><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>T</mi></msup></msubsup><msup><mi>D</mi><mn>2</mn></msup><mspace width="0.166667em" /><msup><mi>L</mi><mi mathvariant="script">R</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><msubsup><mi>ξ</mi><mi>t</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup></mrow></mstyle></math>
Graph
converges for <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></math>
Graph
due to the construction above.
Finally, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math>
Graph
we estimate:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><msubsup><mi>ξ</mi><mi>t</mi><msup><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>T</mi></msup></msubsup><msup><mi>D</mi><mn>2</mn></msup><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><msubsup><mi>ξ</mi><mi>t</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><mover><mo>=</mo><mtext>(14)</mtext></mover><msubsup><mi>ξ</mi><mi>t</mi><msup><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>T</mi></msup></msubsup><msup><mi>D</mi><mn>2</mn></msup><msup><mi>L</mi><mi mathvariant="script">R</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><msubsup><mi>ξ</mi><mi>t</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mrow /></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mspace width="2em" /><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></munder><mn>2</mn><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mi>n</mi><mo>+</mo><mi>i</mi></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></munder><mn>2</mn><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mi>n</mi><mo>+</mo><mi>i</mi></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mrow /></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mspace width="1em" /><mo>=</mo><msubsup><mi>ξ</mi><mi>t</mi><msup><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>T</mi></msup></msubsup><msup><mi>D</mi><mn>2</mn></msup><msup><mi>L</mi><mi mathvariant="script">R</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><msubsup><mi>ξ</mi><mi>t</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><mo>+</mo><mn>2</mn><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">H</mi><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></munder><mfenced close=")" open="("><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup><mo>-</mo><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup></mfenced><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mi>i</mi></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mi>n</mi><mo>+</mo><mi>i</mi></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mrow /></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mspace width="1em" /><mover><mo>≤</mo><mrow><mi>c</mi><mo stretchy="false">)</mo></mrow></mover><msubsup><mi>ξ</mi><mi>t</mi><msup><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>T</mi></msup></msubsup><msup><mi>D</mi><mn>2</mn></msup><msup><mi>L</mi><mi mathvariant="script">R</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><msubsup><mi>ξ</mi><mi>t</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><mo>+</mo><mn>2</mn><mfenced close=")" open="("><msubsup><mi>η</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup><mo>-</mo><msubsup><mi>η</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup></mfenced><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><msubsup><mi>ξ</mi><mrow><mi>t</mi><mo>,</mo><mi>n</mi><mo>+</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><mo>.</mo></mrow></mstyle></mtd></mtr></mtable></mrow></math>
Graph
Thus, due to d) and e), <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>ξ</mi><mi>t</mi><msup><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>T</mi></msup></msubsup><msup><mi>D</mi><mn>2</mn></msup><mspace width="0.166667em" /><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><msubsup><mi>ξ</mi><mi>t</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup></mrow></math>
Graph
has to be negative for t small enough. As we have seen in Step 2c, it holds <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mrow><mi mathvariant="script">T</mi></mrow><mo>′</mo></msup><mo>⊂</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mi mathvariant="script">S</mi></msubsup></mrow></math>
Graph
. Then, due a) and b), we have
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mi>Q</mi><msubsup><mi>I</mi><mrow><mi>t</mi><mo>,</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mi mathvariant="script">S</mi></msubsup></mrow><mi mathvariant="script">S</mi></msubsup><mo>≥</mo><mi>Q</mi><msubsup><mi>I</mi><mrow><mi>t</mi><mo>,</mo><msup><mrow><mi mathvariant="script">T</mi></mrow><mo>′</mo></msup></mrow><mi mathvariant="script">S</mi></msubsup><mo>+</mo><mfenced close="|" open="|"><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
By Step 2a, we have <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>Q</mi><msubsup><mi>I</mi><mrow><mi>t</mi><mo>,</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup></mrow><mi mathvariant="script">S</mi></msubsup><mo>=</mo><msubsup><mover><mrow><mi mathvariant="italic">QI</mi></mrow><mo>¯</mo></mover><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup><mi mathvariant="script">R</mi></msubsup></mrow></math>
Graph
, and by Step 2b, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>Q</mi><msubsup><mi>I</mi><mrow><mi>t</mi><mo>,</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup></mrow><mi mathvariant="script">S</mi></msubsup><mo>=</mo><mi>Q</mi><msubsup><mi>I</mi><mrow><mi>t</mi><mo>,</mo><msup><mrow><mi mathvariant="script">T</mi></mrow><mo>′</mo></msup></mrow><mi mathvariant="script">S</mi></msubsup></mrow></math>
Graph
. Overall, we obtain:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mi>m</mi><mo>=</mo><mi>Q</mi><msubsup><mi>I</mi><mrow><mi>t</mi><mo>,</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mi mathvariant="script">S</mi></msubsup></mrow><mi mathvariant="script">S</mi></msubsup><mo>≥</mo><msubsup><mover><mrow><mi mathvariant="italic">QI</mi></mrow><mo>¯</mo></mover><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup><mi mathvariant="script">R</mi></msubsup><mo>+</mo><mfenced close="|" open="|"><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mfenced><mo>=</mo><mi>T</mi><mi>I</mi><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>□</mo></math>
Graph
Proof of Theorem 5
(i) We show the existence of nondegenerate Karush–Kuhn–Tucker points of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math>
Graph
in a neighborhood of <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math>
Graph
.
-
<bold> Step 1. </bold> First, we show that for all
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math>
Graph
- it holds
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>≠</mo><mn>0</mn></mrow></math>
Graph
- . Assume contrarily that
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo>=</mo><mn>0</mn></mrow></math>
Graph
- for some
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math>
Graph
- . We then have due to T-stationarity, cf. (13):
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>c</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><mo>=</mo><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo>+</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub><mo>=</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- Moreover, we have in view of Lemma 1c) an index
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mi>i</mi><mo stretchy="false">~</mo></mover><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mrow><mo stretchy="true">\</mo><mi mathvariant="script">E</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>.</mo></mrow></math>
Graph
- Thus it holds, cf. (13),
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>c</mi><mover accent="true"><mi>i</mi><mo stretchy="false">~</mo></mover></msub><mo>=</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub></mrow></math>
Graph
- . Due to the assumption on c, we have
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>=</mo><mover accent="true"><mi>i</mi><mo stretchy="false">~</mo></mover></mrow></math>
Graph
- , a contradiction. Hence, we may write:
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mfenced close="}" open="{"><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mo><</mo><mn>0</mn></mfenced></mfenced><mo>∪</mo><mfenced close="}" open="{"><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>></mo><mn>0</mn></mfenced></mfenced></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><msubsup><mi>a</mi><mrow><mn>10</mn></mrow><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>∪</mo><msubsup><mi>a</mi><mrow><mn>10</mn></mrow><mo>></mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- Due to NDT6 and NDT3, we may split the other index sets as
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mfenced close="}" open="{"><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mo><</mo><mn>0</mn></mfenced></mfenced><mo>∪</mo><mfenced close="}" open="{"><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>></mo><mn>0</mn></mfenced></mfenced></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><msubsup><mi>a</mi><mrow><mn>01</mn></mrow><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>∪</mo><msubsup><mi>a</mi><mrow><mn>01</mn></mrow><mo>></mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mfenced close="}" open="{"><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mo><</mo><mn>0</mn></mfenced></mfenced><mo>∪</mo><mfenced close="}" open="{"><mi>i</mi><mo>∈</mo><mi>a</mi><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msub><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>></mo><mn>0</mn></mfenced></mfenced></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><msubsup><mi>a</mi><mrow><mn>00</mn></mrow><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>∪</mo><msubsup><mi>a</mi><mrow><mn>00</mn></mrow><mo>></mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
-
<bold> Step 2. </bold> We consider the auxiliary system of equations
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>F</mi><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>λ</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>σ</mi><mo>,</mo><mi>ϱ</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow></math>
Graph
- given by (16)–(22), which mimics stationarity and feasibility. For stationarity we use: 16
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mo>-</mo><mi>L</mi><mfenced close=")" open="("><mi>t</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>λ</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>σ</mi><mo>,</mo><mi>ϱ</mi></mfenced><mo>=</mo><mn>0</mn><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
• where
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mi>L</mi><mo>=</mo></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mi>c</mi></mrow></mtd></mtr></mtable></mrow></mfenced><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow></munder><msub><mi>λ</mi><mi>p</mi></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></munder><msub><mi>μ</mi><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></munder><msub><mi>μ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>-</mo><msub><mi>μ</mi><mn>3</mn></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mi>e</mi></mrow></mtd></mtr></mtable></mrow></mfenced><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><mfrac><msub><mi>σ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msub><mi>y</mi><mi>i</mi></msub><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>x</mi><mi>i</mi></msub><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>10</mn></mrow><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><mfrac><msub><mi>σ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><msub><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msub><mi>y</mi><mi>i</mi></msub><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>x</mi><mi>i</mi></msub><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>10</mn></mrow><mo>></mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msub><mi>σ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><mfenced close=")" open="("><msub><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><msub><mi>e</mi><mi>i</mi></msub></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><msub><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced></mfenced><mo>.</mo></mrow></mstyle></mtd></mtr></mtable></mrow></math>
Graph
- For feasibility we use: 17
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mn>0</mn><mo>,</mo><mspace width="0.166667em" /><mi>p</mi><mo>∈</mo><mi>P</mi><mo>,</mo><mspace width="1em" /><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo><mspace width="0.166667em" /><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
• 18
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mn>1</mn><mo>+</mo><mi>ε</mi><mo>-</mo><msub><mi>y</mi><mi>i</mi></msub><mo>=</mo></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mn>0</mn><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mfenced close=")" open="("><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo><mspace width="1em" /><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mi>y</mi><mi>i</mi></msub><mo>-</mo><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>-</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo></mrow></mstyle></mtd></mtr></mtable></mrow></math>
Graph
• 19
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfrac><mn>1</mn><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><mfenced close=")" open="("><msub><mi>x</mi><mi>i</mi></msub><msub><mi>y</mi><mi>i</mi></msub><mo>-</mo><mi>t</mi></mfenced><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mn>0</mn><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>01</mn></mrow><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo><mspace width="1em" /><mfrac><mn>1</mn><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><mfenced close=")" open="("><msub><mi>x</mi><mi>i</mi></msub><msub><mi>y</mi><mi>i</mi></msub><mo>+</mo><mi>t</mi></mfenced><mo>=</mo><mn>0</mn><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>01</mn></mrow><mo>></mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
• 20
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfrac><mn>1</mn><mrow><mrow><mo stretchy="false">|</mo></mrow><msub><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub><mrow><mo stretchy="false">|</mo></mrow></mrow></mfrac><mfenced close=")" open="("><mspace width="0.333333em" /><mtext>sgn</mtext><mspace width="0.333333em" /><mfenced close=")" open="("><msub><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfenced><msub><mi>x</mi><mi>i</mi></msub><msub><mi>y</mi><mi>i</mi></msub><mo>-</mo><mi>t</mi></mfenced><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mn>0</mn><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>10</mn></mrow><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo><mspace width="1em" /><msub><mi>y</mi><mi>i</mi></msub><mo>=</mo><mn>0</mn><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>10</mn></mrow><mo>></mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
• 21
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mstyle displaystyle="true" scriptlevel="0"><mrow><msub><mi>x</mi><mi>i</mi></msub><mo>+</mo><mfrac><mrow><msub><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><msqrt><mi>t</mi></msqrt></mrow><msqrt><mrow><msub><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><msub><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub></mrow></msqrt></mfrac><mo>=</mo></mrow></mstyle></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mn>0</mn><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>00</mn></mrow><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo><mspace width="1em" /><msub><mi>x</mi><mi>i</mi></msub><mo>-</mo><mfrac><mrow><msub><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><msqrt><mi>t</mi></msqrt></mrow><msqrt><mrow><mo>-</mo><msub><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><msub><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub></mrow></msqrt></mfrac><mo>=</mo><mn>0</mn><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>00</mn></mrow><mo>></mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo></mrow></mstyle></mtd></mtr></mtable></mrow></math>
Graph
• 22
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mstyle displaystyle="true" scriptlevel="0"><mrow><msub><mi>y</mi><mi>i</mi></msub><mo>+</mo><mfrac><mrow><msub><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><msqrt><mi>t</mi></msqrt></mrow><msqrt><mrow><msub><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><msub><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub></mrow></msqrt></mfrac><mo>=</mo></mrow></mstyle></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mn>0</mn><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>00</mn></mrow><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo><mspace width="1em" /><msub><mi>y</mi><mi>i</mi></msub><mo>-</mo><mfrac><mrow><msub><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><msqrt><mi>t</mi></msqrt></mrow><msqrt><mrow><mo>-</mo><msub><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><msub><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub></mrow></msqrt></mfrac><mo>=</mo><mn>0</mn><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>00</mn></mrow><mo>></mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>.</mo></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd></mtr></mtable></mrow></math>
Graph
- In view of feasibility and T-stationarity of
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></math>
Graph
• for
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">R</mi></math>
Graph
- , the vector
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>λ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math>
Graph
- solves (16)–(22).
-
<bold> Step 3. </bold> We consider the Jacobian matrix
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>D</mi><mi>F</mi><mrow><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>λ</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>σ</mi><mo>,</mo><mi>ρ</mi><mo stretchy="false">)</mo></mrow><mo>=</mo><mfenced close="]" open="["><mrow><mtable><mtr><mtd><mi>A</mi></mtd><mtd><mrow><mrow /><mi>B</mi></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msup><mi>B</mi><mi>T</mi></msup></mrow></mtd><mtd><mrow><mrow /><mi>D</mi></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></math>
Graph
• , where
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mi>A</mi><mo>=</mo></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>-</mo><msup><mi>D</mi><mn>2</mn></msup><mi>f</mi><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow></munder><msub><mi>λ</mi><mi>p</mi></msub><msup><mi>D</mi><mn>2</mn></msup><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msub><mi>μ</mi><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msub><msup><mi>D</mi><mn>2</mn></msup><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mrow /></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><mfrac><mn>1</mn><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><mi>E</mi><mrow><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>10</mn></mrow><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><mfrac><mn>1</mn><msub><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><mi>E</mi><mrow><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mstyle></mtd></mtr></mtable></mrow></math>
Graph
- the columns of B are given by the vectors:
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo><mspace width="0.166667em" /><mi>p</mi><mo>∈</mo><mi>P</mi><mo>,</mo><mspace width="1em" /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo><mspace width="0.166667em" /><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo><mspace width="1em" /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mo>-</mo><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mfenced close=")" open="("><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo><mspace width="1em" /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mi>e</mi></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mfrac><msub><mi>y</mi><mi>i</mi></msub><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mfrac><msub><mi>x</mi><mi>i</mi></msub><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo><mspace width="1em" /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mfrac><msub><mi>y</mi><mi>i</mi></msub><msub><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mfrac><msub><mi>x</mi><mi>i</mi></msub><msub><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>10</mn></mrow><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo><mspace width="1em" /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>10</mn></mrow><mo>></mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><msub><mi>e</mi><mi>i</mi></msub></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- and D consists of
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mo stretchy="false">|</mo><mi>P</mi><mo stretchy="false">|</mo></mrow><mo>+</mo><mfenced close="|" open="|"><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mfenced><mo>+</mo><mfenced close="|" open="|"><mi mathvariant="script">E</mi><mfenced close=")" open="("><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mfenced><mo>+</mo><mn>1</mn><mo>+</mo><mfenced close="|" open="|"><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mfenced><mo>+</mo><mfenced close="|" open="|"><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mfenced></mrow></math>
Graph
- vanishing rows. The remaining rows of D are given by the vectors:
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mo>-</mo><mfrac><msqrt><mrow><mo>-</mo><msub><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mi>t</mi></mrow></msqrt><mrow><mn>2</mn><msqrt><mrow><mo>-</mo><msubsup><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow><mn>3</mn></msubsup></mrow></msqrt></mrow></mfrac><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mfrac><msqrt><mi>t</mi></msqrt><mrow><mn>2</mn><msqrt><mrow><msub><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><msub><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub></mrow></msqrt></mrow></mfrac><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>10</mn></mrow><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo><mspace width="1em" /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mfrac><msqrt><mrow><mo>-</mo><msub><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub><mi>t</mi></mrow></msqrt><mrow><mn>2</mn><msqrt><msubsup><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow><mn>3</mn></msubsup></msqrt></mrow></mfrac><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mo>-</mo><mfrac><msqrt><mi>t</mi></msqrt><mrow><mn>2</mn><msqrt><mrow><mo>-</mo><msub><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><msub><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub></mrow></msqrt></mrow></mfrac><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>10</mn></mrow><mo>></mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mfrac><msqrt><mi>t</mi></msqrt><mrow><mn>2</mn><msqrt><mrow><msub><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><msub><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub></mrow></msqrt></mrow></mfrac><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mo>-</mo><mfrac><msqrt><mrow><mo>-</mo><msub><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mi>t</mi></mrow></msqrt><mrow><mn>2</mn><msqrt><mrow><mo>-</mo><msubsup><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mn>3</mn></msubsup></mrow></msqrt></mrow></mfrac><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>10</mn></mrow><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo><mspace width="1em" /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mo>-</mo><mfrac><msqrt><mi>t</mi></msqrt><mrow><mn>2</mn><msqrt><mrow><mo>-</mo><msub><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><msub><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub></mrow></msqrt></mrow></mfrac><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mo>-</mo><mfrac><msqrt><mrow><msub><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mi>t</mi></mrow></msqrt><mrow><mn>2</mn><msqrt><mrow><mo>-</mo><msubsup><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mn>3</mn></msubsup></mrow></msqrt></mrow></mfrac><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo><mspace width="0.166667em" /><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>10</mn></mrow><mo>></mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math>
Graph
- Additionally we have
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>D</mi><mo>=</mo><mn>0</mn></mrow></math>
Graph
• at
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>λ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math>
Graph
- . Hence, we can apply Theorem 2.3.2 from [[13]], which says that
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>D</mi><mi>F</mi><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>λ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>ρ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>=</mo><mfenced close="]" open="["><mrow><mtable><mtr><mtd><mi>A</mi></mtd><mtd><mrow><mrow /><mi>B</mi></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msup><mi>B</mi><mi>T</mi></msup></mrow></mtd><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></math>
Graph
- is nonsingular if and only if
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>ξ</mi><mi>T</mi></msup><mi>A</mi><mi>ξ</mi><mo>≠</mo><mn>0</mn></mrow></math>
Graph
• for all
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>ξ</mi><mo>∈</mo><msup><mi>B</mi><mo>⊥</mo></msup></mrow></math>
Graph
- , the orthogonal complement of the subspace spanned by the columns of B. In view of
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>B</mi><mo>⊥</mo></msup><mo>=</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup></mrow></math>
Graph
- , we check:
-
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msup><mi>ξ</mi><mi>T</mi></msup><mi>A</mi><mi>ξ</mi><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><msup><mi>ξ</mi><mi>T</mi></msup><mfenced close=")" open="("><mstyle displaystyle="true" scriptlevel="0"><mo>-</mo><msup><mi>D</mi><mn>2</mn></msup><msup><mi>L</mi><mi mathvariant="script">R</mi></msup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><mfrac><mn>1</mn><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><mi>E</mi><mrow><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>10</mn></mrow><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><mfrac><mn>1</mn><msub><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><mi>E</mi><mrow><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow></mstyle></mfenced><mi>ξ</mi></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mo>=</mo></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>-</mo><munder><munder accentunder="true"><mrow><msup><mi>ξ</mi><mi>T</mi></msup><msup><mi>D</mi><mn>2</mn></msup><msup><mi>L</mi><mi mathvariant="script">R</mi></msup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi>ξ</mi></mrow><mo>⏟</mo></munder><mrow><mo>≠</mo><mn>0</mn><mspace width="0.333333em" /><mtext>due</mtext><mspace width="0.333333em" /><mspace width="0.333333em" /><mtext>to</mtext><mspace width="0.333333em" /><mspace width="0.333333em" /><mtext>NDT4</mtext><mspace width="0.333333em" /></mrow></munder><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><mfrac><mn>1</mn><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><mn>2</mn><msub><mi>ξ</mi><mi>i</mi></msub><munder><munder accentunder="true"><msub><mi>ξ</mi><mrow><mi>n</mi><mo>+</mo><mi>i</mi></mrow></msub><mo>⏟</mo></munder><mrow><mo>=</mo><mn>0</mn></mrow></munder><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>10</mn></mrow><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><mfrac><mn>1</mn><msub><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><mn>2</mn><msub><mi>ξ</mi><mi>i</mi></msub><munder><munder accentunder="true"><msub><mi>ξ</mi><mrow><mi>n</mi><mo>+</mo><mi>i</mi></mrow></msub><mo>⏟</mo></munder><mrow><mo>=</mo><mn>0</mn></mrow></munder><mo>.</mo></mrow></mstyle></mtd></mtr></mtable></mrow></math>
Graph
Hence, by means of the implicit function theorem we obtain for any <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mo>></mo><mn>0</mn></mrow></math>
Graph
sufficiently small a solution <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><mi>t</mi><mo>,</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo>,</mo><msup><mi>λ</mi><mi>t</mi></msup><mo>,</mo><msup><mi>μ</mi><mi>t</mi></msup><mo>,</mo><msup><mi>σ</mi><mi>t</mi></msup><mo>,</mo><msup><mi>ϱ</mi><mi>t</mi></msup></mfenced></math>
Graph
of the system of equations (16)–(22).
-
<bold> Step 4. </bold> By choosing t even smaller, if necessary, we can ensure due to continuity reasons as well as NDT2, NDT3, and NDT6 that the following holds:
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>g</mi><mi>q</mi></msub><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced><mo>></mo><mn>0</mn></mrow></math>
Graph
, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>q</mi><mo>∈</mo><mi>Q</mi><mo stretchy="true">\</mo></mrow><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math>
Graph
and <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>μ</mi><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow><mi>t</mi></msubsup><mo>></mo><mn>0</mn></mrow></math>
Graph
, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math>
Graph
,
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mspace width="0.333333em" /><mtext>sgn</mtext><mspace width="0.333333em" /><mfenced close=")" open="("><msubsup><mi>σ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup></mfenced><mo>=</mo><mspace width="0.333333em" /><mtext>sgn</mtext><mspace width="0.333333em" /><mfenced close=")" open="("><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub></mfenced></mrow></math>
Graph
, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math>
Graph
,
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mspace width="0.333333em" /><mtext>sgn</mtext><mspace width="0.333333em" /><mfenced close=")" open="("><msubsup><mi>σ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup></mfenced><mo>=</mo><mspace width="0.333333em" /><mtext>sgn</mtext><mspace width="0.333333em" /><mfenced close=")" open="("><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow></msub></mfenced></mrow></math>
Graph
, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mspace width="0.333333em" /><mtext>sgn</mtext><mspace width="0.333333em" /><mfenced close=")" open="("><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup></mfenced><mo>=</mo><mspace width="0.333333em" /><mtext>sgn</mtext><mspace width="0.333333em" /><mfenced close=")" open="("><msub><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfenced></mrow></math>
Graph
, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math>
Graph
,
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mspace width="0.333333em" /><mtext>sgn</mtext><mspace width="0.333333em" /><mfenced close=")" open="("><msubsup><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup></mfenced><mo>=</mo><mspace width="0.333333em" /><mtext>sgn</mtext><mspace width="0.333333em" /><mfenced close=")" open="("><msub><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub></mfenced></mrow></math>
Graph
, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mo><</mo><mn>0</mn></mrow></math>
Graph
, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math>
Graph
,
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup><mo>≥</mo><mn>0</mn></mrow></math>
Graph
, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><mfenced close="}" open="{"><mn>1</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>n</mi></mfenced></mrow></math>
Graph
and <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup><mo><</mo><mn>1</mn><mo>+</mo><mi>ε</mi></mrow></math>
Graph
, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><mfenced close="}" open="{"><mn>1</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>n</mi></mfenced><mrow><mo stretchy="true">\</mo><mi mathvariant="script">E</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math>
Graph
.
From here it is straightforward to see that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></math>
Graph
is feasible for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math>
Graph
and we have:
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced><mo>=</mo><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math>
Graph
, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="script">E</mi><mfenced close=")" open="("><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>=</mo><mi mathvariant="script">E</mi><mfenced close=")" open="("><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math>
Graph
, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="script">N</mi><mfenced close=")" open="("><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>=</mo><msubsup><mi>a</mi><mn>10</mn><mo>></mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math>
Graph
, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="script">O</mi><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>=</mo><mi mathvariant="normal">∅</mi></mrow></math>
Graph
,
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>=</mo><msubsup><mi>a</mi><mn>01</mn><mo>></mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>∪</mo><mfenced close="}" open="{"><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mn>10</mn><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><mo><</mo><mn>0</mn></mfenced></mfenced><mo>∪</mo><msubsup><mi>a</mi><mn>00</mn><mo>></mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math>
Graph
,
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>=</mo><msubsup><mi>a</mi><mn>01</mn><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>∪</mo><mfenced close="}" open="{"><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mn>10</mn><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><mo>></mo><mn>0</mn></mfenced></mfenced><mo>∪</mo><msubsup><mi>a</mi><mn>00</mn><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math>
Graph
.
Thus, it holds:
<p>
<ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><mi>f</mi><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mi>c</mi></mrow></mtd></mtr></mtable></mrow></mfenced><mo>=</mo></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><munder><mo movablelimits="false">∑</mo><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow></munder><msubsup><mi>λ</mi><mrow><mi>p</mi></mrow><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><msub><mi>h</mi><mi>p</mi></msub><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></munder><msubsup><mi>μ</mi><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><msub><mi>g</mi><mi>q</mi></msub><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></munder><msubsup><mi>μ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>+</mo><msubsup><mi>μ</mi><mn>3</mn><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mi>e</mi></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msubsup><mi>σ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfrac><mn>1</mn><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msubsup><mi>y</mi><mrow><mi>i</mi></mrow><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msubsup><mi>x</mi><mrow><mi>i</mi></mrow><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>10</mn></mrow><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msubsup><mi>σ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfrac><mn>1</mn><msub><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msubsup><mi>y</mi><mrow><mi>i</mi></mrow><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msubsup><mi>x</mi><mrow><mi>i</mi></mrow><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mn>10</mn><mo>></mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msubsup><mi>σ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><mfenced close=")" open="("><msubsup><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><msub><mi>e</mi><mi>i</mi></msub></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><msubsup><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced></mfenced></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mo>=</mo></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><munder><mo movablelimits="false">∑</mo><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow></munder><msubsup><mi>λ</mi><mrow><mi>p</mi></mrow><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><msub><mi>h</mi><mi>p</mi></msub><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow></mrow></munder><msubsup><mi>μ</mi><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi mathvariant="normal">∇</mi><msub><mi>g</mi><mi>q</mi></msub><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mo stretchy="false">(</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow></munder><msubsup><mi>μ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>+</mo><msubsup><mi>μ</mi><mn>3</mn><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><mi>e</mi></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mtable><mtr><mtd><mrow><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></mtd></mtr></mtable></mrow></munder><msubsup><mi>σ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfrac><mn>1</mn><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mtable><mtr><mtd><mrow><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></mtd></mtr></mtable></mrow></munder><msubsup><mi>σ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfrac><mn>1</mn><msub><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mrow /></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mtable><mtr><mtd><mrow><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></mtd></mtr></mtable></mrow></munder><mfrac><msqrt><mrow><mo>-</mo><msubsup><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><msubsup><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup></mrow></msqrt><msqrt><mi>t</mi></msqrt></mfrac><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mtable><mtr><mtd><mrow><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></mtd></mtr></mtable></mrow></munder><msubsup><mi>σ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfrac><mn>1</mn><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mtable><mtr><mtd><mrow><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></mtd></mtr></mtable></mrow></munder><msubsup><mi>σ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfrac><mn>1</mn><msub><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mtable><mtr><mtd><mrow><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></mtd></mtr></mtable></mrow></munder><mo>-</mo><mfrac><msqrt><mrow><msubsup><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><msubsup><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup></mrow></msqrt><msqrt><mi>t</mi></msqrt></mfrac><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><mi mathvariant="script">N</mi><mfenced close=")" open="("><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></munder><msubsup><mi>σ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>.</mo></mrow></mstyle></mtd></mtr></mtable></mrow></math> </ephtml>
</p>
Graph
<p>We rename the multipliers as</p>
<p>
<ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mfenced open="{"><mrow><mtable><mtr><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><msubsup><mi>σ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfrac><mn>1</mn><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><mo>,</mo></mrow></mstyle></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>∩</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><msubsup><mi>σ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfrac><mn>1</mn><msub><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><mo>,</mo></mrow></mstyle></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>∩</mo><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mfrac><msqrt><mrow><mo>-</mo><msubsup><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><msubsup><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup></mrow></msqrt><msqrt><mi>t</mi></msqrt></mfrac><mo>,</mo></mrow></mstyle></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>∩</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mn>0</mn><mo>,</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>else,</mtext><mspace width="0.333333em" /></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mfenced open="{"><mrow><mtable><mtr><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mo>-</mo><msubsup><mi>σ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfrac><mn>1</mn><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><mo>,</mo></mrow></mstyle></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>∩</mo><msub><mi>a</mi><mn>01</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>-</mo><msubsup><mi>σ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfrac><mn>1</mn><msub><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><mo>,</mo></mrow></mstyle></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>∩</mo><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mfrac><msqrt><mrow><msubsup><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><msubsup><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup></mrow></msqrt><msqrt><mi>t</mi></msqrt></mfrac><mo>,</mo></mrow></mstyle></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>∩</mo><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mn>0</mn><mo>,</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>else,</mtext><mspace width="0.333333em" /></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><msubsup><mi>ν</mi><mi>i</mi><mi>t</mi></msubsup><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mfenced open="{"><mrow><mtable><mtr><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><msubsup><mi>σ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mo>,</mo></mrow></mstyle></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mi>i</mi><mo>∈</mo><mi mathvariant="script">N</mi><mfenced close=")" open="("><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>∩</mo><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mn>0</mn><mo>,</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mspace width="0.333333em" /><mtext>else.</mtext><mspace width="0.333333em" /></mrow></mtd></mtr></mtable></mrow></mfenced></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd></mtr></mtable></mrow></math> </ephtml>
</p>
Graph
<p>Hence,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></math> </p>
Graph
<p>fulfills (
9). Also, it is straightforward to check that (
10) and (
11) are fulfilled. Thus,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></math> </p>
Graph
<p>is a Karush–Kuhn–Tucker point of
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math> </p>
Graph
.
-
<bold> Step 5. </bold> Moreover, ND1 is satisfied as well in view of Theorem 2. Similar to (10) and (11), ND2 holds at
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></math>
Graph
- . It remains to show ND3, i.e.
-
<ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msubsup><mi>ξ</mi><mi>k</mi><mi>T</mi></msubsup><msup><mi>D</mi><mn>2</mn></msup><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><msub><mi>ξ</mi><mi>k</mi></msub><mo>≠</mo><mn>0</mn><mspace width="1em" /><mspace width="0.333333em" /><mtext>for</mtext><mspace width="0.333333em" /><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>...</mo><mo>,</mo><mn>2</mn><mi>n</mi><mo>-</mo><msubsup><mi>α</mi><mi>t</mi><mi mathvariant="script">S</mi></msubsup><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml>
Graph
• where
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>ξ</mi><mn>1</mn></msub><mo>,</mo><mo>...</mo><msub><mi>ξ</mi><mrow><mn>2</mn><mi>n</mi><mo>-</mo><msubsup><mi>α</mi><mi>t</mi><mi mathvariant="script">S</mi></msubsup></mrow></msub></mrow></math> </ephtml>
Graph
- form a basis of
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mi mathvariant="script">S</mi></msubsup></math>
Graph
- , cf. Step 1a from the proof of Theorem 3. Note, that by construction
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>α</mi><mi>t</mi><mi mathvariant="script">S</mi></msubsup></math> </ephtml>
Graph
- is constant for t sufficiently small. Thus, we refer to it as
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>α</mi><mi mathvariant="script">S</mi></msup></math> </ephtml>
Graph
- . Next, we construct for
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mo>></mo><mn>0</mn></mrow></math>
Graph
- sufficiently small such a basis as follows. First, we choose eigenvectors
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mover accent="true"><mrow><mi>ξ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>1</mn></msub><mo>,</mo><mo>...</mo><mo>,</mo><msub><mover accent="true"><mrow><mi>ξ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mi>n</mi><mo>-</mo><msup><mi>α</mi><mi mathvariant="script">R</mi></msup></mrow></msub></mrow></math> </ephtml>
Graph
<p>• of</p>
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>D</mi><mn>2</mn></msup><mspace width="0.166667em" /><msup><mi>L</mi><mi mathvariant="script">R</mi></msup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math> </ephtml>
Graph
- forming a basis of
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup></math>
Graph
- , cf. Step 1b from the proof of Theorem 4. With similar arguments as in Step 2b of the proof of Theorem 4 and by using the implicit function theorem, we find
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>ξ</mi><mi>j</mi><mi>t</mi></msubsup><mo>∈</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mi mathvariant="script">S</mi></msubsup></mrow></math> </ephtml>
Graph
• ,
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>...</mo><mo>,</mo><mn>2</mn><mi>n</mi><mo>-</mo><msup><mi>α</mi><mi mathvariant="script">R</mi></msup></mrow></math> </ephtml>
Graph
- , still linearly independent. The remaining
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>2</mn><mi>n</mi><mo>-</mo><msup><mi>α</mi><mi mathvariant="script">S</mi></msup><mo>-</mo><mfenced close=")" open="("><mn>2</mn><mi>n</mi><mo>-</mo><msup><mi>α</mi><mi mathvariant="script">R</mi></msup></mfenced><mo>=</mo><mfenced close="|" open="|"><msub><mi>a</mi><mn>00</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mfenced></mrow></math> </ephtml>
Graph
- vectors are chosen as follows. Namely, for
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math>
Graph
- we consider
-
<ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mi>t</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><mo>=</mo><mfenced close="}" open="{"><mi>ξ</mi><mo>∈</mo><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup><mspace width="0.166667em" /><mfenced open="|"><mspace width="0.166667em" /><mrow><mtable><mtr><mtd columnalign="left"><mrow><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi>D</mi><msub><mi>h</mi><mi>p</mi></msub><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>p</mi><mo>∈</mo><mi>P</mi><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mi>D</mi><msub><mi>g</mi><mi>q</mi></msub><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><mi>e</mi></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><mi mathvariant="script">E</mi><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msub><mi>e</mi><mi>i</mi></msub><mo>,</mo><mn>0</mn></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mrow><mo stretchy="true">\</mo><mrow><mo stretchy="false">{</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">}</mo></mrow><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><mn>0</mn><mo>,</mo><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo stretchy="true">\</mo></mrow><mrow><mo stretchy="false">{</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">}</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msub><mi>e</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><mo>,</mo><mfrac><msubsup><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup><msubsup><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup></mfrac><msub><mi>e</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mfenced close=")" open="("><mrow><mtable><mtr><mtd><mrow><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub><mo>,</mo><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><msub><mi>e</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mi>ξ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>∪</mo><msub><mi>a</mi><mn>10</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr></mtable></mrow></mfenced></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml>
Graph
- As in Step 4 of the proof of Theorem 4, we can find
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mover accent="true"><mrow><mi>ξ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><mo>∈</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mn>0</mn><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msubsup><mrow><mo stretchy="true">\</mo></mrow><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mi mathvariant="script">R</mi></msubsup></mrow></math> </ephtml>
Graph
- . Especially,
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mfenced close=")" open="("><msub><mi>e</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><mo>,</mo><mn>0</mn></mfenced><msub><mover accent="true"><mrow><mi>ξ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><mo>≠</mo><mn>0</mn></mrow></math> </ephtml>
Graph
- . We note that
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><mfrac><msubsup><mi>x</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>t</mi></msubsup><msubsup><mi>y</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>t</mi></msubsup></mfrac><mo>=</mo><mfrac><msub><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><msub><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub></mfrac></mrow></math> </ephtml>
Graph
- . Using this and the implicit function theorem, we find for t sufficiently small a vector
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>ξ</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup><mo>∈</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mi mathvariant="script">S</mi></msubsup></mrow></math> </ephtml>
Graph
- . It is then straightforward to check, that
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>ξ</mi><mi>j</mi><mi>t</mi></msubsup><mo>,</mo><mi>j</mi><mo>∈</mo><mfenced close="}" open="{"><mn>1</mn><mo>,</mo><mo>...</mo><mo>,</mo><mn>2</mn><mi>n</mi><mo>-</mo><msup><mi>α</mi><mi mathvariant="script">R</mi></msup></mfenced></mrow></math> </ephtml>
Graph
• and
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>ξ</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup></math> </ephtml>
Graph
• ,
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math>
Graph
- , indeed form a basis of
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mi mathvariant="script">S</mi></msubsup></math>
Graph
- . We continue by considering the following limits with respect to the subsets of
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="script">H</mi><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math> </ephtml>
Graph
- for any sequence of vectors
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>ξ</mi><mi>t</mi></msup><mo>∈</mo><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mi mathvariant="script">S</mi></msubsup></mrow></math> </ephtml>
Graph
- from the constructed base, cf. the definition of
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>η</mi></math> </ephtml>
Graph
- -multipliers:
-
<ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mstyle displaystyle="true" scriptlevel="0"><mrow><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mn>01</mn><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup><msubsup><mi>ξ</mi><mi>i</mi><mi>t</mi></msubsup><msubsup><mi>ξ</mi><mrow><mi>n</mi><mo>+</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mo>=</mo></mrow></mstyle></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mn>01</mn><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msubsup><mi>σ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfrac><mn>1</mn><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><mfrac><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup></mfrac><msup><mfenced close=")" open="("><msubsup><mi>ξ</mi><mrow><mi>n</mi><mo>+</mo><mi>i</mi></mrow><mi>t</mi></msubsup></mfenced><mn>2</mn></msup><mo>=</mo><mn>0</mn><mo>,</mo></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mn>01</mn><mo>></mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><msubsup><mi>ξ</mi><mi>i</mi><mi>t</mi></msubsup><msubsup><mi>ξ</mi><mrow><mi>n</mi><mo>+</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mo>=</mo></mrow></mstyle></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mn>01</mn><mo>></mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><mo>-</mo><msubsup><mi>σ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfrac><mn>1</mn><msub><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><mfrac><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup></mfrac><msup><mfenced close=")" open="("><msubsup><mi>ξ</mi><mrow><mi>n</mi><mo>+</mo><mi>i</mi></mrow><mi>t</mi></msubsup></mfenced><mn>2</mn></msup><mo>=</mo><mn>0</mn><mo>,</mo></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mn>10</mn><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><mo>></mo><mn>0</mn></mrow></munder><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup><msubsup><mi>ξ</mi><mi>i</mi><mi>t</mi></msubsup><msubsup><mi>ξ</mi><mrow><mi>n</mi><mo>+</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mo>=</mo></mrow></mstyle></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mn>10</mn><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><mo>></mo><mn>0</mn></mrow></munder><msubsup><mi>σ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfrac><mn>1</mn><msub><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><mfrac><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup></mfrac><msup><mfenced close=")" open="("><msubsup><mi>ξ</mi><mi>i</mi><mi>t</mi></msubsup></mfenced><mn>2</mn></msup><mo>=</mo><mn>0</mn><mo>,</mo></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mn>10</mn><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><mo><</mo><mn>0</mn></mrow></munder><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><msubsup><mi>ξ</mi><mi>i</mi><mi>t</mi></msubsup><msubsup><mi>ξ</mi><mrow><mi>n</mi><mo>+</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mo>=</mo></mrow></mstyle></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mn>10</mn><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>,</mo><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup><mo><</mo><mn>0</mn></mrow></munder><mo>-</mo><msubsup><mi>σ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mfrac><mn>1</mn><msub><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>i</mi></msub></mfrac><mfrac><msubsup><mi>y</mi><mi>i</mi><mi>t</mi></msubsup><msubsup><mi>x</mi><mi>i</mi><mi>t</mi></msubsup></mfrac><msup><mfenced close=")" open="("><msubsup><mi>ξ</mi><mi>i</mi><mi>t</mi></msubsup></mfenced><mn>2</mn></msup><mo>=</mo><mn>0</mn><mo>.</mo></mrow></mstyle></mtd></mtr></mtable></mrow></math> </ephtml>
Graph
- If for some
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mn>00</mn><mo><</mo></msubsup><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math> </ephtml>
Graph
• or
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mn>00</mn><mo>></mo></msubsup><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math> </ephtml>
Graph
- it holds
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><mfenced close=")" open="("><msub><mi>e</mi><mi>i</mi></msub><mo>,</mo><mn>0</mn></mfenced><msup><mi>ξ</mi><mi>t</mi></msup><mo>≠</mo><mn>0</mn></mrow></math> </ephtml>
Graph
- , we observe:
-
<ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mstyle displaystyle="true" scriptlevel="0"><mrow><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mn>00</mn><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup><msubsup><mi>ξ</mi><mi>i</mi><mi>t</mi></msubsup><msubsup><mi>ξ</mi><mrow><mi>n</mi><mo>+</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mo>=</mo></mrow></mstyle></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mn>00</mn><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><mo>-</mo><mfrac><msqrt><mrow><msubsup><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><msubsup><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup></mrow></msqrt><msqrt><mi>t</mi></msqrt></mfrac><mfrac><msubsup><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><msubsup><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup></mfrac><msup><mfenced close=")" open="("><msubsup><mi>ξ</mi><mi>i</mi><mi>t</mi></msubsup></mfenced><mn>2</mn></msup><mo>=</mo><mo>-</mo><mi>∞</mi><mo>,</mo></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mn>00</mn><mo>></mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><msubsup><mi>ξ</mi><mi>i</mi><mi>t</mi></msubsup><msubsup><mi>ξ</mi><mrow><mi>n</mi><mo>+</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mo>=</mo></mrow></mstyle></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mn>00</mn><mo>></mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><mo>-</mo><mfrac><msqrt><mrow><mo>-</mo><msubsup><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><msubsup><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup></mrow></msqrt><msqrt><mi>t</mi></msqrt></mfrac><mfrac><msubsup><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><msubsup><mi>ϱ</mi><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup></mfrac><msup><mfenced close=")" open="("><msubsup><mi>ξ</mi><mi>i</mi><mi>t</mi></msubsup></mfenced><mn>2</mn></msup><mo>=</mo><mi>∞</mi><mo>.</mo></mrow></mstyle></mtd></mtr></mtable></mrow></math> </ephtml>
Graph
- Finally, we calculate as in (15):
-
<ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msup><mfenced close=")" open="("><msup><mi>ξ</mi><mi>t</mi></msup></mfenced><mi>T</mi></msup><msup><mi>D</mi><mn>2</mn></msup><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><msup><mi>ξ</mi><mi>t</mi></msup><mo>=</mo></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><msup><mfenced close=")" open="("><msup><mi>ξ</mi><mi>t</mi></msup></mfenced><mi>T</mi></msup><msup><mi>D</mi><mn>2</mn></msup><msup><mi>L</mi><mi mathvariant="script">R</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><msup><mi>ξ</mi><mi>t</mi></msup><mo>-</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></munder><mn>2</mn><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><msubsup><mi>ξ</mi><mi>i</mi><mi>t</mi></msubsup><msubsup><mi>ξ</mi><mrow><mi>n</mi><mo>+</mo><mi>i</mi></mrow><mi>t</mi></msubsup></mrow></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mrow /><mrow /></mrow></mtd><mtd columnalign="left"><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow /><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>i</mi><mo>∈</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></munder><mn>2</mn><msubsup><mi>η</mi><mi>i</mi><mrow><mo>≤</mo><mo>,</mo><mi>t</mi></mrow></msubsup><msubsup><mi>ξ</mi><mi>i</mi><mi>t</mi></msubsup><msubsup><mi>ξ</mi><mrow><mi>n</mi><mo>+</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mo>.</mo></mrow></mstyle></mtd></mtr></mtable></mrow></math> </ephtml>
Graph
- Altogether, we obtain for any basis vector
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>ξ</mi><mi>j</mi><mi>t</mi></msubsup><mo>,</mo><mi>j</mi><mo>∈</mo><mfenced close="}" open="{"><mn>1</mn><mo>,</mo><mo>...</mo><mo>,</mo><mn>2</mn><mi>n</mi><mo>-</mo><msup><mi>α</mi><mi mathvariant="script">R</mi></msup></mfenced></mrow></math> </ephtml>
Graph
<p>• of</p>
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mrow><mi mathvariant="script">T</mi></mrow><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mi mathvariant="script">S</mi></msubsup></math>
Graph
<p>• : 23</p>
-
<ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><msup><mfenced close=")" open="("><msubsup><mi>ξ</mi><mi>j</mi><mi>t</mi></msubsup></mfenced><mi>T</mi></msup><msup><mi>D</mi><mn>2</mn></msup><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><msubsup><mi>ξ</mi><mi>j</mi><mi>t</mi></msubsup><mo>=</mo><msub><mover accent="true"><mrow><mi>a</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>j</mi></msub><msup><mfenced close="∥" open="∥"><msub><mover accent="true"><mrow><mi>ξ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>j</mi></msub></mfenced><mn>2</mn></msup><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml>
Graph
• where
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mover accent="true"><mrow><mi>a</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>j</mi></msub></math> </ephtml>
Graph
- is a nonzero eigenvalue of
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>D</mi><mn>2</mn></msup><mspace width="0.166667em" /><msup><mi>L</mi><mi mathvariant="script">R</mi></msup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math> </ephtml>
Graph
- due to the choice of
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mover accent="true"><mrow><mi>ξ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>j</mi></msub></math> </ephtml>
Graph
- and NDT4. Let us now focus on the basis vectors
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>ξ</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>t</mi></msubsup></math> </ephtml>
Graph
• ,
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math>
Graph
- . We then have: 24
-
<ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><msup><mfenced close=")" open="("><msubsup><mi>ξ</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup></mfenced><mi>T</mi></msup><msup><mi>D</mi><mn>2</mn></msup><msup><mi>L</mi><mi mathvariant="script">S</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><msubsup><mi>ξ</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup><mo>=</mo><mo>-</mo><mi>∞</mi><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml>
Graph
- This is due to the following reasoning. First,
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mfenced close=")" open="("><msubsup><mi>ξ</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup></mfenced><mi>T</mi></msup><msup><mi>D</mi><mn>2</mn></msup><mspace width="0.166667em" /><msup><mi>L</mi><mi mathvariant="script">R</mi></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><msubsup><mi>ξ</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup></mrow></math> </ephtml>
Graph
- is bounded due to the construction of
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>ξ</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup></math> </ephtml>
Graph
- , and, moreover,
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><mfenced close=")" open="("><msub><mi>e</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><mo>,</mo><mn>0</mn></mfenced><msubsup><mi>ξ</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>t</mi></msubsup><mo>≠</mo><mn>0</mn></mrow></math> </ephtml>
Graph
- . We conclude that ND3 is fulfilled. Additionally, the T-index of
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math>
Graph
- is equal to the sum of its quadratic index and its biactive index, i.e.
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>m</mi><mo>=</mo><msup><mover><mrow><mi mathvariant="italic">QI</mi></mrow><mo>¯</mo></mover><mi mathvariant="script">R</mi></msup><mo>+</mo><mfenced close="|" open="|"><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mfenced></mrow></math> </ephtml>
Graph
- . In view of (23) and (24), the quadratic index
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mrow><mi mathvariant="italic">QI</mi></mrow><mi>t</mi><mi mathvariant="script">S</mi></msubsup></math> </ephtml>
Graph
<p>• of</p>
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow></math>
Graph
- is then exactly m for t sufficiently small. (ii) Next, we elaborate on the uniqueness of Karush–Kuhn–Tucker points
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup><mo stretchy="false">)</mo></mrow></math>
Graph
- constructed above.
-
<bold> Step 6. </bold> As preliminary considerations we show Steps 6.1
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo></math> </ephtml>
Graph
<p>• 6.3.</p>
-
<bold> Step 6.1. </bold> For all sufficiently small t we show
-
<ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msubsup><mi>a</mi><mrow><mn>10</mn></mrow><mo>></mo></msubsup><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>=</mo><mi mathvariant="script">N</mi><mfenced close=")" open="("><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>,</mo><mspace width="1em" /><msubsup><mi>a</mi><mrow><mn>10</mn></mrow><mo><</mo></msubsup><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>=</mo><msub><mi>a</mi><mn>10</mn></msub><mrow><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo stretchy="true">\</mo><mi mathvariant="script">N</mi></mrow><mfenced close=")" open="("><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml>
Graph
- First we note, that due to Remark 1 we have
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><msubsup><mi>μ</mi><mn>3</mn><mi>t</mi></msubsup><mo>=</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub></mrow></math> </ephtml>
Graph
- . Suppose
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>10</mn></mrow><mo>></mo></msubsup><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math> </ephtml>
Graph
- . Due to (13), we have
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>c</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><mo>=</mo><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>2</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo>+</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub><mo>></mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub></mrow></math> </ephtml>
Graph
- . Assume
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∉</mo><mi mathvariant="script">N</mi><mfenced close=")" open="("><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math>
Graph
<p>• . Since</p>
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></math>
Graph
- is a Karush–Kuhn–Tucker point (12),
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>c</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub><mo>≤</mo><msubsup><mi>μ</mi><mn>3</mn><mi>t</mi></msubsup></mrow></math> </ephtml>
Graph
- . Taking the limit yields a contradiction. Thus,
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>a</mi><mrow><mn>10</mn></mrow><mo>></mo></msubsup><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>⊂</mo><mi mathvariant="script">N</mi><mfenced close=")" open="("><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math> </ephtml>
Graph
- . The reverse inclusion follows from Lemma 3d). For the other assertion, we just recall
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>a</mi><mn>10</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>=</mo><msubsup><mi>a</mi><mrow><mn>10</mn></mrow><mo><</mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>∪</mo><msubsup><mi>a</mi><mrow><mn>10</mn></mrow><mo>></mo></msubsup><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></math> </ephtml>
Graph
- , cf. Step 1.
-
<bold> Step 6.2. </bold> For all sufficiently small t we show
-
<ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msubsup><mi>a</mi><mrow><mn>00</mn></mrow><mo>></mo></msubsup><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>=</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>∩</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>,</mo><mspace width="1em" /><msubsup><mi>a</mi><mrow><mn>00</mn></mrow><mo><</mo></msubsup><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>=</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>∩</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml>
Graph
- Lemma 3c) provides
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>⊂</mo><mi mathvariant="script">H</mi><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math> </ephtml>
Graph
- . Suppose
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>∩</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math> </ephtml>
Graph
- . Then, the
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math>
Graph
- -th row of (9) provides 25
-
<ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfrac><mrow><mi>∂</mi><mi>f</mi></mrow><mrow><mi>∂</mi><msub><mi>x</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></mrow></mfrac><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced><mo>=</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow></munder><msubsup><mi>λ</mi><mi>p</mi><mi>t</mi></msubsup><mfrac><mrow><mi>∂</mi><msub><mi>h</mi><mi>p</mi></msub></mrow><mrow><mi>∂</mi><msub><mi>x</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></mrow></mfrac><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced></mrow></munder><msubsup><mi>μ</mi><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow><mi>t</mi></msubsup><mfrac><mrow><mi>∂</mi><msub><mi>g</mi><mi>q</mi></msub></mrow><mrow><mi>∂</mi><msub><mi>x</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></mrow></mfrac><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced><mo>+</mo><msubsup><mi>μ</mi><mn>3</mn><mi>t</mi></msubsup><mo>+</mo><msubsup><mi>η</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><msubsup><mi>y</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml>
Graph
- However, we also have due to T-stationarity of
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math>
Graph
- that the
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math>
Graph
- -th row of (5) reads as 26
-
<ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfrac><mrow><mi>∂</mi><mi>f</mi></mrow><mrow><mi>∂</mi><msub><mi>x</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></mrow></mfrac><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>=</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow></munder><msub><mover accent="true"><mrow><mi>λ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>p</mi></msub><mfrac><mrow><mi>∂</mi><msub><mi>h</mi><mi>p</mi></msub></mrow><mrow><mi>∂</mi><msub><mi>x</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></mrow></mfrac><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msub><mfrac><mrow><mi>∂</mi><msub><mi>g</mi><mi>q</mi></msub></mrow><mrow><mi>∂</mi><msub><mi>x</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></mrow></mfrac><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>+</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub><mo>+</mo><msub><mover accent="true"><mrow><mi>ϱ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml>
Graph
- The application of Lemma 3a) yields
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>Q</mi><mn>0</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>=</mo><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced></mrow></math> </ephtml>
Graph
- for t sufficiently small. Remark 1a) states
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><msup><mi>λ</mi><mi>t</mi></msup><mo>=</mo><mover accent="true"><mrow><mi>λ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></math>
Graph
• ,
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><msup><mi>μ</mi><mi>t</mi></msup><mo>=</mo><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></math>
Graph
- . By taking
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></math>
Graph
- in (25) and comparing to (26), we obtain
-
<ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><msubsup><mi>η</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><msubsup><mi>y</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup><mo>=</mo><msub><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml>
Graph
- In view of NDT3, we know that
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo>≠</mo><mn>0</mn></mrow></math>
Graph
- . Thus, we conclude, due to
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>η</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><msubsup><mi>y</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup><mo>≥</mo><mn>0</mn></mrow></math> </ephtml>
Graph
<p>• , that</p>
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>ϱ</mi><mrow><mn>1</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo>></mo><mn>0</mn></mrow></math> </ephtml>
Graph
- and, thus, by definition
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>00</mn></mrow><mo>></mo></msubsup><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math> </ephtml>
Graph
- . Analogously, we have
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>00</mn></mrow><mo><</mo></msubsup><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math> </ephtml>
Graph
• for all
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>∩</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math> </ephtml>
Graph
- . Both assertions then follow.
-
<bold> Step 6.3. </bold> For all sufficiently small t we show
-
<ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msubsup><mi>a</mi><mrow><mn>01</mn></mrow><mo><</mo></msubsup><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>=</mo><msub><mi>a</mi><mn>01</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>∩</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>,</mo><mspace width="1em" /><msubsup><mi>a</mi><mrow><mn>01</mn></mrow><mo>></mo></msubsup><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>=</mo><msub><mi>a</mi><mn>01</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>∩</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml>
Graph
• Suppose
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>∩</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≥</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math> </ephtml>
Graph
<p>• . The</p>
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math>
Graph
- -th row of (9) provides again 27
-
<ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfrac><mrow><mi>∂</mi><mi>f</mi></mrow><mrow><mi>∂</mi><msub><mi>x</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></mrow></mfrac><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced><mo>=</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow></munder><msubsup><mi>λ</mi><mi>p</mi><mi>t</mi></msubsup><mfrac><mrow><mi>∂</mi><msub><mi>h</mi><mi>p</mi></msub></mrow><mrow><mi>∂</mi><msub><mi>x</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></mrow></mfrac><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced></mrow></munder><msubsup><mi>μ</mi><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow><mi>t</mi></msubsup><mfrac><mrow><mi>∂</mi><msub><mi>g</mi><mi>q</mi></msub></mrow><mrow><mi>∂</mi><msub><mi>x</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></mrow></mfrac><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup></mfenced><mo>+</mo><msubsup><mi>μ</mi><mn>3</mn><mi>t</mi></msubsup><mo>+</mo><msubsup><mi>η</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><msubsup><mi>y</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml>
Graph
<p>• The</p>
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math>
Graph
- -th row of (5) provides 28
-
<ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfrac><mrow><mi>∂</mi><mi>f</mi></mrow><mrow><mi>∂</mi><msub><mi>x</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></mrow></mfrac><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>=</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>p</mi><mo>∈</mo><mi>P</mi></mrow></munder><msub><mover accent="true"><mrow><mi>λ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mi>p</mi></msub><mfrac><mrow><mi>∂</mi><msub><mi>h</mi><mi>p</mi></msub></mrow><mrow><mi>∂</mi><msub><mi>x</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></mrow></mfrac><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>+</mo><munder><mo movablelimits="false">∑</mo><mrow><mi>q</mi><mo>∈</mo><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></munder><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msub><mfrac><mrow><mi>∂</mi><msub><mi>g</mi><mi>q</mi></msub></mrow><mrow><mi>∂</mi><msub><mi>x</mi><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></msub></mrow></mfrac><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>+</mo><msub><mover accent="true"><mrow><mi>μ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mn>3</mn></msub><mo>+</mo><msub><mover accent="true"><mrow><mi>σ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mrow><mn>1</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml>
Graph
- As above, we apply Lemma 3a) and Remark 1a). By taking
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></math>
Graph
- in (27) and comparing to (28), we obtain
-
<ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><munder><mo movablelimits="false">lim</mo><mrow><mi>t</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><msubsup><mi>η</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><msubsup><mi>y</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup><mo>=</mo><msub><mi>σ</mi><mrow><mn>1</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml>
Graph
- We conclude due to
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>η</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mo>≥</mo><mo>,</mo><mi>t</mi></mrow></msubsup><msubsup><mi>y</mi><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mi>t</mi></msubsup><mo>≥</mo><mn>0</mn></mrow></math> </ephtml>
Graph
- and NDT6, i.e.
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>σ</mi><mrow><mn>1</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo>≠</mo><mn>0</mn></mrow></math> </ephtml>
Graph
- , that it holds
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>σ</mi><mrow><mn>1</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo>></mo><mn>0</mn></mrow></math> </ephtml>
Graph
- and, thus, by definition
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>01</mn></mrow><mo>></mo></msubsup><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math> </ephtml>
Graph
- . Analogously, we have
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msubsup><mi>a</mi><mrow><mn>01</mn></mrow><mo><</mo></msubsup><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math> </ephtml>
Graph
• for all
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>∩</mo><msup><mrow><mi mathvariant="script">H</mi></mrow><mo>≤</mo></msup><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math> </ephtml>
Graph
- . We conclude the proof of Step 6.2 by noting that
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>a</mi><mn>01</mn></msub><mrow><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo stretchy="true">\</mo><mi mathvariant="script">H</mi></mrow><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced><mo>=</mo><mi mathvariant="normal">∅</mi></mrow></math> </ephtml>
Graph
- . Assume instead there exists
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mrow><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo stretchy="true">\</mo><mi mathvariant="script">H</mi></mrow><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></mrow></math> </ephtml>
Graph
- , then we derive as before
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>σ</mi><mrow><mn>1</mn><mo>,</mo><mover accent="true"><mrow><mi>i</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo>=</mo><mn>0</mn></mrow></math> </ephtml>
Graph
- , a contradiction to NDT6.
-
<bold> Step 7. </bold> We recall that any Karush–Kuhn–Tucker point
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><msup><mrow><mover accent="true"><mi>x</mi><mo stretchy="true">~</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mi>y</mi><mo stretchy="true">~</mo></mover></mrow><mi>t</mi></msup><mo stretchy="false">)</mo></mrow></math> </ephtml>
Graph
<p>• of</p>
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">S</mi></math>
Graph
- with multipliers
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><msup><mrow><mover accent="true"><mi>λ</mi><mo stretchy="true">~</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mi>μ</mi><mo stretchy="true">~</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mi>η</mi><mo stretchy="true">~</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mi>ν</mi><mo stretchy="true">~</mo></mover></mrow><mi>t</mi></msup><mo stretchy="false">)</mo></mrow></math> </ephtml>
Graph
- has to fulfill (9)–(11). We define the multipliers
-
<ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msubsup><mover accent="true"><mi>σ</mi><mo stretchy="true">~</mo></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><msubsup><mrow><mover accent="true"><mi>η</mi><mo stretchy="true">~</mo></mover></mrow><mi>i</mi><mo>≥</mo></msubsup><mo>-</mo><msubsup><mrow><mover accent="true"><mi>η</mi><mo stretchy="true">~</mo></mover></mrow><mi>i</mi><mo>≤</mo></msubsup></mfenced><msubsup><mover accent="true"><mi>y</mi><mo stretchy="true">~</mo></mover><mi>i</mi><mi>t</mi></msubsup><mo>,</mo><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>01</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>∩</mo><mi mathvariant="script">H</mi><mfenced close=")" open="("><msup><mrow><mover accent="true"><mi>x</mi><mo stretchy="true">~</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mi>y</mi><mo stretchy="true">~</mo></mover></mrow><mi>t</mi></msup></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><msubsup><mover accent="true"><mi>σ</mi><mo stretchy="true">~</mo></mover><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><msubsup><mrow><mover accent="true"><mi>η</mi><mo stretchy="true">~</mo></mover></mrow><mi>i</mi><mo>≥</mo></msubsup><mo>-</mo><msubsup><mrow><mover accent="true"><mi>η</mi><mo stretchy="true">~</mo></mover></mrow><mi>i</mi><mo>≤</mo></msubsup></mfenced><msubsup><mover accent="true"><mi>x</mi><mo stretchy="true">~</mo></mover><mi>i</mi><mi>t</mi></msubsup><mo>,</mo><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>10</mn></msub><mrow><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo stretchy="true">\</mo><mi mathvariant="script">N</mi></mrow><mrow><mo stretchy="false">(</mo><msup><mrow><mover accent="true"><mi>y</mi><mo stretchy="true">~</mo></mover></mrow><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><msubsup><mover accent="true"><mi>σ</mi><mo stretchy="true">~</mo></mover><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><msub><mi>ν</mi><mi>i</mi></msub><mo>,</mo><mi>i</mi><mo>∈</mo><mi mathvariant="script">N</mi><mrow><mo stretchy="false">(</mo><msup><mrow><mover accent="true"><mi>y</mi><mo stretchy="true">~</mo></mover></mrow><mi>t</mi></msup><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><msubsup><mover accent="true"><mi>ϱ</mi><mo stretchy="true">~</mo></mover><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><msubsup><mrow><mover accent="true"><mi>η</mi><mo stretchy="true">~</mo></mover></mrow><mi>i</mi><mo>≥</mo></msubsup><mo>-</mo><msubsup><mrow><mover accent="true"><mi>η</mi><mo stretchy="true">~</mo></mover></mrow><mi>i</mi><mo>≤</mo></msubsup></mfenced><msubsup><mover accent="true"><mi>y</mi><mo stretchy="true">~</mo></mover><mi>i</mi><mi>t</mi></msubsup><mo>,</mo><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><msubsup><mover accent="true"><mi>ϱ</mi><mo stretchy="true">~</mo></mover><mrow><mn>2</mn><mo>,</mo><mi>i</mi></mrow><mi>t</mi></msubsup><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="("><msubsup><mrow><mover accent="true"><mi>η</mi><mo stretchy="true">~</mo></mover></mrow><mi>i</mi><mo>≥</mo></msubsup><mo>-</mo><msubsup><mrow><mover accent="true"><mi>η</mi><mo stretchy="true">~</mo></mover></mrow><mi>i</mi><mo>≤</mo></msubsup></mfenced><msubsup><mover accent="true"><mi>x</mi><mo stretchy="true">~</mo></mover><mi>i</mi><mi>t</mi></msubsup><mo>,</mo><mi>i</mi><mo>∈</mo><msub><mi>a</mi><mn>00</mn></msub><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml>
Graph
- Let us consider the point
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><mi>t</mi><mo>,</mo><msup><mrow><mover accent="true"><mi>x</mi><mo stretchy="true">~</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mi>y</mi><mo stretchy="true">~</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mi>λ</mi><mo stretchy="true">~</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mi>μ</mi><mo stretchy="true">~</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mi>σ</mi><mo stretchy="true">~</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mi>ϱ</mi><mo stretchy="true">~</mo></mover></mrow><mi>t</mi></msup></mfenced></math> </ephtml>
Graph
- . In view of Lemma 3 and Lemma 2, we obtain for t sufficiently small
-
<ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>=</mo><msub><mi>Q</mi><mn>0</mn></msub><mfenced close=")" open="("><msup><mrow><mover accent="true"><mi>x</mi><mo stretchy="true">~</mo></mover></mrow><mi>t</mi></msup></mfenced><mo>,</mo><mspace width="1em" /><mi mathvariant="script">E</mi><mfenced close=")" open="("><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced><mo>=</mo><mi mathvariant="script">E</mi><mfenced close=")" open="("><msup><mrow><mover accent="true"><mi>y</mi><mo stretchy="true">~</mo></mover></mrow><mi>t</mi></msup></mfenced><mo>,</mo><mspace width="1em" /><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msubsup><mover accent="true"><mi>y</mi><mo stretchy="true">~</mo></mover><mi>i</mi><mi>t</mi></msubsup><mo>=</mo><mi>n</mi><mo>-</mo><mi>s</mi><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml>
Graph
- Due to Step 6, an immediate calculation shows then that
-
<ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mfenced open="("><mi>t</mi><mo>,</mo><msup><mrow><mover accent="true"><mi>x</mi><mo stretchy="true">~</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mi>y</mi><mo stretchy="true">~</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mi>λ</mi><mo stretchy="true">~</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mi>μ</mi><mo stretchy="true">~</mo></mover></mrow><mi>t</mi></msup><mo>,</mo></mfenced><mfenced close=")"><msup><mrow><mover accent="true"><mi>σ</mi><mo stretchy="true">~</mo></mover></mrow><mi>t</mi></msup><mo>,</mo><msup><mrow><mover accent="true"><mi>ϱ</mi><mo stretchy="true">~</mo></mover></mrow><mi>t</mi></msup></mfenced></mrow></math> </ephtml>
Graph
- fulfills equations (16)–(22) for t sufficiently small. However, the inverse function theorem was used in Step 3 to find the solution of this system of equations in the neighborhood of
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mover accent="true"><mrow><mi>x</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo>,</mo><mover accent="true"><mrow><mi>y</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></math>
Graph
- . Hence,
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced close=")" open="("><msup><mi>x</mi><mi>t</mi></msup><mo>,</mo><msup><mi>y</mi><mi>t</mi></msup></mfenced></math>
Graph
- must be unique.
-
<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>□</mo></math>
Graph
Publisher's Note
<p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p>
References
<p class="blist">
1
Scholtes S. Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 2001; 11: 918-936. 1855214. 10.1137/S1052623499361233
</p>
<p class="blist">
2
Izmailov AF, Solodov MV. Mathematical programs with vanishing constraints: Optimality conditions, sensitivity, and a relaxation method. J. Optim. Theory Appl. 2009; 142: 501-532. 2535113. 10.1007/s10957-009-9517-4
</p>
<p class="blist">
3
Kanzow C, Mehlitz P, Steck D. Relaxation schemes for mathematical programmes with switching constraints. Optim. Methods Softw. 2021; 36: 1223-1258. 4432938. 10.1080/10556788.2019.1663425
</p>
<p class="blist">
4
Lämmel, S, Shikhman, V: Optimality conditions for mathematical programs with orthogonality type constraints. Set-Valued Variat. Anal. 31(9) (2023)
</p>
<p class="blist">
5
Burdakov OP, Kanzow C, Schwartz A. Mathematical programs with cardinality constraints: reformulation by complementarity-type conditions and a regularization method. SIAM J. Optim. 2016; 26: 397-425. 3456393. 10.1137/140978077
</p>
<p class="blist">
6
Bucher M, Schwartz A. Second-order optimality conditions and improved convergence results for regularization methods for cardinality-constrained optimization problems. J. Optim. Theory Appl. 2018; 178: 383-410. 3825630. 10.1007/s10957-018-1320-7
</p>
<p class="blist">
7
Branda M, Bucher M, Červinka M, Schwartz A. Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization. Comput. Optim. Appl. 2018; 70: 503-530. 3795255. 10.1007/s10589-018-9985-2
</p>
<p class="blist">
8
Jongen HT, Jonker P, Twilt F. Nonlinear Optimization in Finite Dimensions. 2000: Dordrecht; Kluwer Academic Publishers
</p>
<p class="blist">
9
Lämmel S, Shikhman V. Global aspects of the continuous reformulation for cardinality-constrained optimization problems. Optimization. 2023. 10.1080/02331934.2023.2249014Online first
</p>
<p class="blist">
Lämmel S, Shikhman V. Cardinality-constrained optimization problems in general position and beyond. Pure Appl. Funct. Anal. 2023; 8; 4: 1107-1133. 4657026
</p>
<p class="blist">
Červinka M, Kanzow C, Schwartz A. Constraint qualifications and optimality conditions for optimization problems with cardinality constraints. Math. Program. 2016; 160: 353-377. 3555392. 10.1007/s10107-016-0986-6
</p>
<p class="blist">
Günzel H. The structured jet transversality theorem. Optimization. 2008; 57: 159-164. 2384972. 10.1080/02331930701779039
</p>
<p class="blist">
Jongen HT, Meer K, Triesch E. Optimization Theory. 2004: Dordrecht; Kluwer Academic Publishers
</p>
<p class="aug">
<p>By Sebastian Lämmel and Vladimir Shikhman</p>
<p>Reported by Author; Author</p>
</p>