Treffer: Algebraic separatrices for non-dicritical foliations on projective spaces of dimension at least four

Title:
Algebraic separatrices for non-dicritical foliations on projective spaces of dimension at least four
Source:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 113:3921-3929
Publication Status:
Preprint
Publisher Information:
Springer Science and Business Media LLC, 2018.
Publication Year:
2018
Document Type:
Fachzeitschrift Article
File Description:
application/xml
Language:
English
ISSN:
1579-1505
1578-7303
DOI:
10.1007/s13398-018-0569-x
DOI:
10.48550/arxiv.1801.03280
Rights:
Springer TDM
arXiv Non-Exclusive Distribution
Accession Number:
edsair.doi.dedup.....38797d3553515f926f3b04c1a4f6ab3c
Database:
OpenAIRE

Weitere Informationen

Non-dicritical codimension one foliations on projective spaces of dimension four or higher always have an invariant algebraic hypersurface. The proof relies on a strengthening of a result by Rossi on the algebraization/continuation of analytic subvarieties of projective spaces.