Treffer: Algebraic separatrices for non-dicritical foliations on projective spaces of dimension at least four
Title:
Algebraic separatrices for non-dicritical foliations on projective spaces of dimension at least four
Authors:
Source:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 113:3921-3929
Publication Status:
Preprint
Publisher Information:
Springer Science and Business Media LLC, 2018.
Publication Year:
2018
Subject Terms:
Mathematics - Complex Variables, non-dicritical singularities, Continuation of analytic objects in several complex variables, 37F75, 32D15, 01 natural sciences, Mathematics - Algebraic Geometry, Mathematics - Classical Analysis and ODEs, Foliations (differential geometric aspects), algebraic separatrices, Classical Analysis and ODEs (math.CA), FOS: Mathematics, Dynamical aspects of holomorphic foliations and vector fields, Complex Variables (math.CV), 0101 mathematics, extension of subvarieties, Algebraic Geometry (math.AG), foliations
Document Type:
Fachzeitschrift
Article
File Description:
application/xml
Language:
English
ISSN:
1579-1505
1578-7303
1578-7303
DOI:
10.1007/s13398-018-0569-x
DOI:
10.48550/arxiv.1801.03280
Access URL:
Rights:
Springer TDM
arXiv Non-Exclusive Distribution
arXiv Non-Exclusive Distribution
Accession Number:
edsair.doi.dedup.....38797d3553515f926f3b04c1a4f6ab3c
Database:
OpenAIRE
Weitere Informationen
Non-dicritical codimension one foliations on projective spaces of dimension four or higher always have an invariant algebraic hypersurface. The proof relies on a strengthening of a result by Rossi on the algebraization/continuation of analytic subvarieties of projective spaces.