Treffer: An extension of q‐zeta function: An extension of \(q\)-zeta function
Title:
An extension of q‐zeta function: An extension of \(q\)-zeta function
Authors:
Source:
International Journal of Mathematics and Mathematical Sciences, Vol 2004, Iss 49, Pp 2649-2651 (2004)
Publisher Information:
Wiley, 2004.
Publication Year:
2004
Subject Terms:
Document Type:
Fachzeitschrift
Article
File Description:
application/xml
Language:
English
ISSN:
1687-0425
0161-1712
0161-1712
DOI:
10.1155/s0161171204402105
Access URL:
https://doaj.org/article/1b47c685e24e4be3b4f3eed8688a3e43
http://downloads.hindawi.com/journals/ijmms/2004/642191.pdf
https://downloads.hindawi.com/journals/ijmms/2004/642191.pdf
https://dblp.uni-trier.de/db/journals/ijmmsc/ijmmsc2004.html#KimJR04
https://www.emis.de/journals/HOA/IJMMS/Volume2004_49/2651.pdf
https://eudml.org/doc/53586
http://downloads.hindawi.com/journals/ijmms/2004/642191.pdf
https://downloads.hindawi.com/journals/ijmms/2004/642191.pdf
https://dblp.uni-trier.de/db/journals/ijmmsc/ijmmsc2004.html#KimJR04
https://www.emis.de/journals/HOA/IJMMS/Volume2004_49/2651.pdf
https://eudml.org/doc/53586
Rights:
CC BY
Accession Number:
edsair.doi.dedup.....3d645d7b724680d3a7b54e5dc9c58bb8
Database:
OpenAIRE
Weitere Informationen
We will define the extension of q‐Hurwitz zeta function due to Kim and Rim (2000) and study its properties. Finally, we lead to a useful new integral representation for the q‐zeta function.