Treffer: Conjugation for polynomial mappings

Title:
Conjugation for polynomial mappings
Source:
ZAMP Zeitschrift f�r angewandte Mathematik und Physik. 46:872-882
Publisher Information:
Springer Science and Business Media LLC, 1995.
Publication Year:
1995
Document Type:
Fachzeitschrift Article
File Description:
application/xml
Language:
English
ISSN:
1420-9039
0044-2275
DOI:
10.1007/bf00917874
Rights:
Springer TDM
Accession Number:
edsair.doi.dedup.....43806b9dd97c48537d68e3dc8a5c507c
Database:
OpenAIRE

Weitere Informationen

This paper suggests a new approach to the Jacobian Conjecture. For a polynomial mapping \(f: \mathbb{C}^n\to \mathbb{C}^n\) with \(f(0)= 0\), \(f'(0)= \text{Id}\) and \(\text{det } f'(x)= 1\) for all \(x\) in \(\mathbb{C}^n\), the authors look for entire mappings \(h_\lambda: \mathbb{C}^n\to \mathbb{C}^n\) conjugating \(\lambda f\) to its linear part \(\lambda\text{ Id}\) at the origin.