Treffer: Conjugation for polynomial mappings
Title:
Conjugation for polynomial mappings
Authors:
Source:
ZAMP Zeitschrift f�r angewandte Mathematik und Physik. 46:872-882
Publisher Information:
Springer Science and Business Media LLC, 1995.
Publication Year:
1995
Subject Terms:
Document Type:
Fachzeitschrift
Article
File Description:
application/xml
Language:
English
ISSN:
1420-9039
0044-2275
0044-2275
DOI:
10.1007/bf00917874
Access URL:
https://ui.adsabs.harvard.edu/abs/1995ZaMP...46..872D/abstract
https://link.springer.com/article/10.1007/BF00917874
https://experts.nebraska.edu/en/publications/conjugation-for-polynomial-mappings
https://iris.univr.it/handle/11562/393331
https://link.springer.com/content/pdf/10.1007/BF00917874.pdf
https://hdl.handle.net/11562/393331
https://link.springer.com/article/10.1007/BF00917874
https://experts.nebraska.edu/en/publications/conjugation-for-polynomial-mappings
https://iris.univr.it/handle/11562/393331
https://link.springer.com/content/pdf/10.1007/BF00917874.pdf
https://hdl.handle.net/11562/393331
Rights:
Springer TDM
Accession Number:
edsair.doi.dedup.....43806b9dd97c48537d68e3dc8a5c507c
Database:
OpenAIRE
Weitere Informationen
This paper suggests a new approach to the Jacobian Conjecture. For a polynomial mapping \(f: \mathbb{C}^n\to \mathbb{C}^n\) with \(f(0)= 0\), \(f'(0)= \text{Id}\) and \(\text{det } f'(x)= 1\) for all \(x\) in \(\mathbb{C}^n\), the authors look for entire mappings \(h_\lambda: \mathbb{C}^n\to \mathbb{C}^n\) conjugating \(\lambda f\) to its linear part \(\lambda\text{ Id}\) at the origin.