Treffer: Applications of subordination chains to starlike mappings in ℂn: Applications of subordination chains to starlike mappings in \(\mathbb{C}^ n\)
Title:
Applications of subordination chains to starlike mappings in ℂn: Applications of subordination chains to starlike mappings in \(\mathbb{C}^ n\)
Authors:
Source:
Pacific J. Math. 168, no. 1 (1995), 33-48
Publisher Information:
Mathematical Sciences Publishers, 1995.
Publication Year:
1995
Subject Terms:
32A30, univalent maps, starlike mappings, Matemática física y química, Representaciones holomorfas, growth theorem, 30C45, 01 natural sciences, 30C65, quasiconformal extension, Special families of functions of several complex variables, Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.), subordination chains, unit ball in \(\mathbb{C}^ n\), 32H02, Other generalizations of function theory of one complex variable, 0101 mathematics, Nevanlinna theory, growth estimates, other inequalities of several complex variables, Funciones de varias variables
Document Type:
Fachzeitschrift
Article<br />Other literature type
File Description:
application/xml; application/pdf; 16 páginas
Language:
English
ISSN:
0030-8730
DOI:
10.2140/pjm.1995.168.33
Access URL:
http://msp.org/pjm/1995/168-1/pjm-v168-n1-p03-s.pdf
https://zbmath.org/779062
https://doi.org/10.2140/pjm.1995.168.33
https://msp.org/pjm/1995/168-1/p03.xhtml
https://msp.org/pjm/1995/168-1/pjm-v168-n1-p03-s.pdf
https://projecteuclid.org/download/pdf_1/euclid.pjm/1102620677
http://projecteuclid.org/euclid.pjm/1102620677
https://zbmath.org/779062
https://doi.org/10.2140/pjm.1995.168.33
https://msp.org/pjm/1995/168-1/p03.xhtml
https://msp.org/pjm/1995/168-1/pjm-v168-n1-p03-s.pdf
https://projecteuclid.org/download/pdf_1/euclid.pjm/1102620677
http://projecteuclid.org/euclid.pjm/1102620677
Accession Number:
edsair.doi.dedup.....45e7d0cf0a23ff5eae4381e097fddff8
Database:
OpenAIRE
Weitere Informationen
We use the work of Pfaltzgraff on subordination chains in \(\mathbb{C}^ n\) to recover a growth theorem for starlike mappings of the unit ball established recently by Barnard, FitzGerald and Gong. The growth theorem in one complex variable is a classical result and holds true for the full class of normalized univalent maps of the unit disc. This is no longer the case if \(n > 1\) whether one works in the unit ball or the polydisc. We also introduce a class of strongly starlike maps for which we construct, aided by the aforementioned technique, an explicit quasiconformal extension to \(\mathbb{C}^ n\). Several examples are discussed at the end.