Treffer: Symmetric functions and the Vandermonde matrix
Title:
Symmetric functions and the Vandermonde matrix
Authors:
Source:
Journal of Computational and Applied Mathematics. 172:49-64
Publisher Information:
Elsevier BV, 2004.
Publication Year:
2004
Subject Terms:
LDU factorization, Symmetric functions and generalizations, Stirling matrix, Applied Mathematics, Pascal matrix, inverse matrix, Direct numerical methods for linear systems and matrix inversion, Symmetric functions, triangular factorization, 01 natural sciences, Triangular and bidiagonal factorization, bidiagonal factorization, q-Stirling numbers, Computational Mathematics, Vandermonde matrix, combinatorial numbers, Other combinatorial number theory, Hermitian, skew-Hermitian, and related matrices, symmetric functions, Theory of matrix inversion and generalized inverses, 0101 mathematics, Factorials, binomial coefficients, combinatorial functions
Document Type:
Fachzeitschrift
Article
File Description:
application/xml
Language:
English
ISSN:
0377-0427
DOI:
10.1016/j.cam.2004.01.032
Access URL:
http://ui.adsabs.harvard.edu/abs/2004JCoAM.172...49O/abstract
https://core.ac.uk/display/102867110
https://www.sciencedirect.com/science/article/pii/S0377042704000974
https://www.sciencedirect.com/science/article/abs/pii/S0377042704000974#!
http://web.deu.edu.tr/halil.oruc/vandermondesymmetric.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0377042704000974
https://avesis.deu.edu.tr/publication/details/6a429a95-8451-4b55-acde-e9684c7c9870/oai
https://core.ac.uk/display/102867110
https://www.sciencedirect.com/science/article/pii/S0377042704000974
https://www.sciencedirect.com/science/article/abs/pii/S0377042704000974#!
http://web.deu.edu.tr/halil.oruc/vandermondesymmetric.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0377042704000974
https://avesis.deu.edu.tr/publication/details/6a429a95-8451-4b55-acde-e9684c7c9870/oai
Rights:
Elsevier Non-Commercial
Accession Number:
edsair.doi.dedup.....4e237361878f4ccb88a5fd96d946d51b
Database:
OpenAIRE
Weitere Informationen
The authors discuss symmetric functions and related combinatorial numbers and their recurrences and relate this to the factorization of structured matrices, such as Vandermonde matrices. First definitions and properties are recalled for symmetric functions, defined as \[ \sigma_r(x_1,\ldots,x_n) = \sum_{1\leq i_1