Treffer: Integrating n-unisolvent sets of functions: Integrating \(n\)-unisolvent sets of functions

Title:
Integrating n-unisolvent sets of functions: Integrating \(n\)-unisolvent sets of functions
Source:
Archiv der Mathematik. 70:313-318
Publisher Information:
Springer Science and Business Media LLC, 1998.
Publication Year:
1998
Document Type:
Fachzeitschrift Article
File Description:
application/xml
Language:
English
ISSN:
1420-8938
0003-889X
DOI:
10.1007/s000130050201
Rights:
Springer TDM
Accession Number:
edsair.doi.dedup.....5ca86592f5908878fa6a91ac22527e8c
Database:
OpenAIRE

Weitere Informationen

A set \(F\) of continuous functions from an interval \(I\) to \(\mathbb{R}\) is called \(n\)-unisolvent \((n\in\mathbb{N})\) if for any set of points \((x_i, y_i)\in I\times\mathbb{R}\), \(i=1,2,\dots,n\) with \(x_1