Result: Multiple return times theorems for weakly mixing systems
Title:
Multiple return times theorems for weakly mixing systems
Authors:
Source:
Annales de l'Institut Henri Poincare (B) Probability and Statistics. 36:153-165
Publisher Information:
Elsevier BV, 2000.
Publication Year:
2000
Subject Terms:
Document Type:
Academic journal
Article
File Description:
application/xml
ISSN:
0246-0203
DOI:
10.1016/s0246-0203(00)00120-5
DOI:
10.17615/jj3m-4591
Access URL:
https://cdr.lib.unc.edu/downloads/nc580x13p
https://zbmath.org/1453269
https://doi.org/10.1016/s0246-0203(00)00120-5
https://www.sciencedirect.com/science/article/abs/pii/S0246020300001205
http://ui.adsabs.harvard.edu/abs/2000AIHPB..36..153A/abstract
http://www.numdam.org/item/AIHPB_2000__36_2_153_0/
https://eudml.org/doc/77654
https://zbmath.org/1453269
https://doi.org/10.1016/s0246-0203(00)00120-5
https://www.sciencedirect.com/science/article/abs/pii/S0246020300001205
http://ui.adsabs.harvard.edu/abs/2000AIHPB..36..153A/abstract
http://www.numdam.org/item/AIHPB_2000__36_2_153_0/
https://eudml.org/doc/77654
Rights:
Elsevier TDM
Accession Number:
edsair.doi.dedup.....62f90d0a57d24b0582b90a3fa87abb19
Database:
OpenAIRE
Further Information
We prove the pointwise convergence of weighted averages 1/N ΣN n=1ang(Rnz) where (Z, K, v, R ) is an ergodic dynamical system. The sequence an is given by expression of the form an = an(x, y1, y2, ..., yj)=(HΠi=1fi(Tbibx)).(JΠj=1gj(Snjyj)), where (b1, b2, ..., bH)∊ZH and J is a positive integer. The functions fi and gj are bounded and the systems (X, F, μ, T) and (Yj, Gj, mj, Sj) are weakly mixing.