Treffer: MacMahon Symmetric Functions, the Partition Lattice, and Young Subgroups: MacMahon symmetric functions, the partition lattice, and Young subgroups.
Title:
MacMahon Symmetric Functions, the Partition Lattice, and Young Subgroups: MacMahon symmetric functions, the partition lattice, and Young subgroups.
Authors:
Contributors:
Universidad de Sevilla. Departamento de álgebra, Universidad de Sevilla. FQM333: Algebra Computacional en Anillos no Conmutativos y Aplicaciones
Source:
idUS. Depósito de Investigación de la Universidad de Sevilla
Universidad de Sevilla (US)
instname
Universidad de Sevilla (US)
instname
Publisher Information:
Elsevier BV, 2001.
Publication Year:
2001
Subject Terms:
Document Type:
Fachzeitschrift
Article
File Description:
application/pdf; application/xml
Language:
English
ISSN:
0097-3165
DOI:
10.1006/jcta.2001.3186
Access URL:
Rights:
Elsevier Non-Commercial
CC BY NC ND
CC BY NC ND
Accession Number:
edsair.doi.dedup.....65f3bca6d1c764afeea3da6f00e5bac5
Database:
OpenAIRE
Weitere Informationen
A MacMahon symmetric function is a formal power series in a finite number of alphabets that is invariant under the diagonal action of the symmetric group. In this article, we show that the MacMahon symmetric functions are the generating functions for the orbits of sets of functions indexed by partitions under the diagonal action of a Young subgroup of a symmetric group. We define a MacMahon chromatic symmetric function that generalizes Stanley's chromatic symmetric function. Then, we study some of the properties of this new function through its connection with the noncommutative chromatic symmetric function of Gebhard and Sagan.