Treffer: On Davenport Constant of the Group $C_2^{r-1} \oplus C_{2k}$: The Davenport constant of the group \(C_2^{r-1} \oplus C_{2k}\)
Title:
On Davenport Constant of the Group $C_2^{r-1} \oplus C_{2k}$: The Davenport constant of the group \(C_2^{r-1} \oplus C_{2k}\)
Authors:
Source:
The Electronic Journal of Combinatorics. 30
Publisher Information:
The Electronic Journal of Combinatorics, 2023.
Publication Year:
2023
Subject Terms:
Document Type:
Fachzeitschrift
Article
File Description:
application/xml
ISSN:
1077-8926
DOI:
10.37236/11194
Accession Number:
edsair.doi.dedup.....68e53cb3cf0849c795fe50313032ea10
Database:
OpenAIRE
Weitere Informationen
Let $G$ be a finite abelian group. The Davenport constant $\mathsf{D}(G)$ is the maximal length of minimal zero-sum sequences over $G$. For groups of the form $C_2^{r-1} \oplus C_{2k}$ the Davenport constant is known for $r\leq 5$. In this paper, we get the precise value of $\mathsf{D}(C_2^{5} \oplus C_{2k})$ for $k\geq 149$. It is also worth pointing out that our result can imply the precise value of $\mathsf{D}(C_2^{4} \oplus C_{2k})$.