Treffer: Finite rank perturbations and distribution theory
Title:
Finite rank perturbations and distribution theory
Authors:
Source:
Proceedings of the American Mathematical Society. 127:1151-1161
Publisher Information:
American Mathematical Society (AMS), 1999.
Publication Year:
1999
Subject Terms:
selfadjoint operator, Perturbation theory of linear operators, perturbations, Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.), Perturbation theories for operators and differential equations in quantum theory, 0101 mathematics, Classical Banach spaces in the general theory, 01 natural sciences, symmetric finite rank operators, Operations with distributions and generalized functions
Document Type:
Fachzeitschrift
Article<br />Other literature type
File Description:
application/xml
Language:
English
ISSN:
1088-6826
0002-9939
0002-9939
DOI:
10.1090/s0002-9939-99-04992-8
Access URL:
https://www.ams.org/proc/1999-127-04/S0002-9939-99-04992-8/S0002-9939-99-04992-8.pdf
https://zbmath.org/1245442
https://doi.org/10.1090/s0002-9939-99-04992-8
https://portal.research.lu.se/portal/en/publications/finite-rank-perturbations-and-distribution-theory(64608760-960f-4e5b-b9b0-9a6f1de643ca).html
https://www.ams.org/journals/proc/1999-127-04/S0002-9939-99-04992-8/home.html
https://lup.lub.lu.se/search/publication/64608760-960f-4e5b-b9b0-9a6f1de643ca
http://www.diva-portal.org/smash/record.jsf?pid=diva2:982765
https://zbmath.org/1245442
https://doi.org/10.1090/s0002-9939-99-04992-8
https://portal.research.lu.se/portal/en/publications/finite-rank-perturbations-and-distribution-theory(64608760-960f-4e5b-b9b0-9a6f1de643ca).html
https://www.ams.org/journals/proc/1999-127-04/S0002-9939-99-04992-8/home.html
https://lup.lub.lu.se/search/publication/64608760-960f-4e5b-b9b0-9a6f1de643ca
http://www.diva-portal.org/smash/record.jsf?pid=diva2:982765
Accession Number:
edsair.doi.dedup.....71f08ae6184a7a61b76d00a98a07e5fb
Database:
OpenAIRE
Weitere Informationen
Perturbations A T A_T of a selfadjoint operator A A by symmetric finite rank operators T T from H 2 ( A ) \mathcal {H}_2 (A) to H − 2 ( A ) \mathcal {H}_{-2} (A) are studied. The finite dimensional family of selfadjoint extensions determined by A T A_T is given explicitly.