Treffer: Absence of the point spectrum in a class of tridiagonal operators: Absence of the point spectrum in a class of tridiagonal operators.

Title:
Absence of the point spectrum in a class of tridiagonal operators: Absence of the point spectrum in a class of tridiagonal operators.
Source:
Applied Mathematics and Computation. 136:131-138
Publisher Information:
Elsevier BV, 2003.
Publication Year:
2003
Document Type:
Fachzeitschrift Article
File Description:
application/xml
Language:
English
ISSN:
0096-3003
DOI:
10.1016/s0096-3003(02)00022-x
Rights:
Elsevier TDM
Accession Number:
edsair.doi.dedup.....747b1ebd2514fb5690885c27d77f5b7c
Database:
OpenAIRE

Weitere Informationen

The paper deals with the tridiagonal operator \[ Te_n= \sqrt{c_n} e_{n+1}+ \sqrt{c_{n-1}} e_{n-1}+ b_n e_n \] with suitable real sequences \((b_n)^\infty_{n=1}\), \((c_n)^\infty_{n=1}\) and the orthonormal basis \((e_n)^\infty_{n=1}\) in a Hilbert space. Sufficient conditions are derived under which the point spectrum of the operator \(T\) outside the interval \([-2\sqrt{c}+ b, 2\sqrt{c}+ b]\) is empty, where \(b= \lim_{n\to\infty} b_n\), \(c= \lim_{n\to\infty} c_n\). The results are illustrated with examples.