Result: A discrete Fourier kernel and Fraenkel's tiling conjecture

Title:
A discrete Fourier kernel and Fraenkel's tiling conjecture
Source:
Acta Arithmetica. 118:283-304
Publication Status:
Preprint
Publisher Information:
Institute of Mathematics, Polish Academy of Sciences, 2005.
Publication Year:
2005
Document Type:
Academic journal Article<br />Other literature type
File Description:
application/xml
Language:
English
ISSN:
1730-6264
0065-1036
DOI:
10.4064/aa118-3-4
DOI:
10.48550/arxiv.math/0407306
Rights:
arXiv Non-Exclusive Distribution
Accession Number:
edsair.doi.dedup.....75424f3fb6cdfd7e82944e6aa1afa6a0
Database:
OpenAIRE

Further Information

The set B_{p,r}^q:=\{\floor{nq/p+r} \colon n\in Z \} with integers p, q, r) is a Beatty set with density p/q. We derive a formula for the Fourier transform \hat{B_{p,r}^q}(j):=\sum_{n=1}^p e^{-2 ��i j \floor{nq/p+r} / q}. A. S. Fraenkel conjectured that there is essentially one way to partition the integers into m>2 Beatty sets with distinct densities. We conjecture a generalization of this, and use Fourier methods to prove several special cases of our generalized conjecture.
24 pages, 6 figures (now with minor revisions and clarifications)