Result: Lagrange interpolation on subgrids of tensor product grids
Title:
Lagrange interpolation on subgrids of tensor product grids
Authors:
Source:
Mathematics of Computation. 73:181-190
Publisher Information:
American Mathematical Society (AMS), 2003.
Publication Year:
2003
Subject Terms:
Document Type:
Academic journal
Article
File Description:
application/xml
Language:
English
ISSN:
1088-6842
0025-5718
0025-5718
DOI:
10.1090/s0025-5718-03-01557-6
Access URL:
https://www.ams.org/mcom/2004-73-245/S0025-5718-03-01557-6/S0025-5718-03-01557-6.pdf
https://dblp.uni-trier.de/db/journals/moc/moc73.html#Sauer04
https://www.ams.org/journals/mcom/2004-73-245/S0025-5718-03-01557-6/
https://dl.acm.org/doi/10.1090/S0025-5718-03-01557-6
https://dl.acm.org/citation.cfm?id=969741
https://dblp.uni-trier.de/db/journals/moc/moc73.html#Sauer04
https://www.ams.org/journals/mcom/2004-73-245/S0025-5718-03-01557-6/
https://dl.acm.org/doi/10.1090/S0025-5718-03-01557-6
https://dl.acm.org/citation.cfm?id=969741
Accession Number:
edsair.doi.dedup.....7bfe279841e08b63f61a1be38ccc4d8c
Database:
OpenAIRE
Further Information
Summary: This note shows that a wide class of algebraically motivated constructions for Lagrange interpolation polynomials always yields a tensor product interpolation space as long as the nodes form a tensor product grid or a lower subset thereof.