Result: Polynomial extensions of van der Waerden’s and Szemerédi’s theorems: Polynomial extensions of van der Waerden's and Szemerédi's theorems
Title:
Polynomial extensions of van der Waerden’s and Szemerédi’s theorems: Polynomial extensions of van der Waerden's and Szemerédi's theorems
Authors:
Source:
Journal of the American Mathematical Society. 9:725-753
Publisher Information:
American Mathematical Society (AMS), 1996.
Publication Year:
1996
Subject Terms:
Arithmetic progressions, Density, gaps, topology, Ramsey theory, Szemerédi theorem, Measure-preserving transformations, 01 natural sciences, configurations in sets of positive density, integer-valued polynomials, Arithmetic combinatorics, higher degree uniformity, arithmetical progressions, polynomial ergodicity, measure preserving transformations on a probability space, polynomial topological van der Waerden theorem, 0101 mathematics, Polynomials in number theory
Document Type:
Academic journal
Article
File Description:
application/xml
Language:
English
ISSN:
1088-6834
0894-0347
0894-0347
DOI:
10.1090/s0894-0347-96-00194-4
Access URL:
https://www.ams.org/jams/1996-9-03/S0894-0347-96-00194-4/S0894-0347-96-00194-4.pdf
https://zbmath.org/957011
https://doi.org/10.1090/s0894-0347-96-00194-4
https://www.ams.org/journals/jams/1996-9-03/S0894-0347-96-00194-4/
https://doi.org/10.1090%2FS0894-0347-96-00194-4
http://math.osu.edu/~leibman.1/preprints/psz.pdf
https://math.osu.edu/~leibman.1/preprints/psz.pdf
https://zbmath.org/957011
https://doi.org/10.1090/s0894-0347-96-00194-4
https://www.ams.org/journals/jams/1996-9-03/S0894-0347-96-00194-4/
https://doi.org/10.1090%2FS0894-0347-96-00194-4
http://math.osu.edu/~leibman.1/preprints/psz.pdf
https://math.osu.edu/~leibman.1/preprints/psz.pdf
Accession Number:
edsair.doi.dedup.....7f8482a7ac1a6680bf72417fa1c6b8d0
Database:
OpenAIRE
Further Information
An extension of the classical van der Waerden and Szemerédi theorems is proved for commuting operators whose exponents are polynomials. As a consequence, for example, one obtains the following result: Let S ⊆ Z l S\subseteq \mathbb {Z}^l be a set of positive upper Banach density, let p 1 ( n ) , … , p k ( n ) p_1(n),\dotsc ,p_k(n) be polynomials with rational coefficients taking integer values on the integers and satisfying p i ( 0 ) = 0 p_i(0)=0 , i = 1 , … , k ; i=1,\dotsc ,k; then for any v 1 , … , v k ∈ Z l v_1,\dotsc ,v_k\in \mathbb {Z}^l there exist an integer n n and a vector u ∈ Z l u\in \mathbb {Z}^l such that u + p i ( n ) v i ∈ S u+p_i(n)v_i\in S for each i ≤ k i\le k .