Result: Polynomial extensions of van der Waerden’s and Szemerédi’s theorems: Polynomial extensions of van der Waerden's and Szemerédi's theorems

Title:
Polynomial extensions of van der Waerden’s and Szemerédi’s theorems: Polynomial extensions of van der Waerden's and Szemerédi's theorems
Source:
Journal of the American Mathematical Society. 9:725-753
Publisher Information:
American Mathematical Society (AMS), 1996.
Publication Year:
1996
Document Type:
Academic journal Article
File Description:
application/xml
Language:
English
ISSN:
1088-6834
0894-0347
DOI:
10.1090/s0894-0347-96-00194-4
Accession Number:
edsair.doi.dedup.....7f8482a7ac1a6680bf72417fa1c6b8d0
Database:
OpenAIRE

Further Information

An extension of the classical van der Waerden and Szemerédi theorems is proved for commuting operators whose exponents are polynomials. As a consequence, for example, one obtains the following result: Let S ⊆ Z l S\subseteq \mathbb {Z}^l be a set of positive upper Banach density, let p 1 ( n ) , … , p k ( n ) p_1(n),\dotsc ,p_k(n) be polynomials with rational coefficients taking integer values on the integers and satisfying p i ( 0 ) = 0 p_i(0)=0 , i = 1 , … , k ; i=1,\dotsc ,k; then for any v 1 , … , v k ∈ Z l v_1,\dotsc ,v_k\in \mathbb {Z}^l there exist an integer n n and a vector u ∈ Z l u\in \mathbb {Z}^l such that u + p i ( n ) v i ∈ S u+p_i(n)v_i\in S for each i ≤ k i\le k .