Result: On a shape derivative formula for star-shaped domains using Minkowski deformation

Title:
On a shape derivative formula for star-shaped domains using Minkowski deformation
Contributors:
Laboratoire de Mathématiques Jean Leray (LMJL), Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Laboratoire de Mathématiques et Applications, Laboratoire de mathématiques et applications, Université Cadi Ayyad Marrakech (UCA)-Faculté des sciences et techniques de Beni-Mellal, CNRSCampus France
Source:
AIMS Mathematics, Vol 8, Iss 8, Pp 19773-19793 (2023)
Publisher Information:
American Institute of Mathematical Sciences (AIMS), 2023.
Publication Year:
2023
Document Type:
Academic journal Article<br />Other literature type<br />Report
ISSN:
2473-6988
DOI:
10.3934/math.20231008
DOI:
10.60692/37711-bd141
DOI:
10.60692/dfkym-vf866
Accession Number:
edsair.doi.dedup.....852f1b2e6551e35b93f97c111e8a847f
Database:
OpenAIRE

Further Information

We consider the shape derivative formula for a volume cost functional studied in previous papers where we used the Minkowski deformation and support functions in the convex setting. In this work, we extend it to some non-convex domains, namely the star-shaped ones. The formula happens to be also an extension of a well-known one in the geometric Brunn-Minkowski theory of convex bodies. At the end, we illustrate the formula by applying it to some model shape optimization problem.