Treffer: The Distribution of Leading Digits and Uniform Distribution Mod 1: The distribution of leading digits and uniform distribution mod 1
Title:
The Distribution of Leading Digits and Uniform Distribution Mod 1: The distribution of leading digits and uniform distribution mod 1
Authors:
Source:
Ann. Probab. 5, no. 1 (1977), 72-81
Publisher Information:
Institute of Mathematical Statistics, 1977.
Publication Year:
1977
Subject Terms:
Probabilistic theory: distribution modulo \(1\), metric theory of algorithms, Normal numbers, radix expansions, Pisot numbers, Salem numbers, good lattice points, etc, Stein's method for dependent variables, 60F05, probabilistic number theory, Central limit and other weak theorems, uniform distribution mod 1, 0101 mathematics, Lead digits, General theory of distribution modulo \(1\), Radix representation, digital problems, 01 natural sciences, 10K05
Document Type:
Fachzeitschrift
Article<br />Other literature type
File Description:
application/xml; application/pdf
ISSN:
0091-1798
DOI:
10.1214/aop/1176995891
Access URL:
https://statweb.stanford.edu/~cgates/PERSI/papers/digits.pdf
http://projecteuclid.org/euclid.aop/1176995891
https://projecteuclid.org/journals/annals-of-probability/volume-5/issue-1/The-Distribution-of-Leading-Digits-and-Uniform-Distribution-Mod-1/10.1214/aop/1176995891.full
https://projecteuclid.org/download/pdf_1/euclid.aop/1176995891
http://projecteuclid.org/euclid.aop/1176995891
https://projecteuclid.org/journals/annals-of-probability/volume-5/issue-1/The-Distribution-of-Leading-Digits-and-Uniform-Distribution-Mod-1/10.1214/aop/1176995891.full
https://projecteuclid.org/download/pdf_1/euclid.aop/1176995891
Rights:
implied-oa
Accession Number:
edsair.doi.dedup.....872b5af8fc40b705c7d0fa3a82373bae
Database:
OpenAIRE
Weitere Informationen
The lead digit behavior of a large class of arithmetic sequences is determined by using results from the theory of uniform distribution $\operatorname{mod} 1$. Theory for triangular arrays is developed and applied to binomial coefficients. A conjecture of Benford's that the distribution of digits in all places tends to be nearly uniform is verified.