Result: The Bailey Lemma and Kostka Polynomials: The Bailey lemma and Kostka polynomials
Title:
The Bailey Lemma and Kostka Polynomials: The Bailey lemma and Kostka polynomials
Authors:
Source:
Journal of Algebraic Combinatorics. 20:131-171
Publication Status:
Preprint
Publisher Information:
Springer Science and Business Media LLC, 2004.
Publication Year:
2004
Subject Terms:
Rogers-Ramanujan identities, infinite-dimensional algebras, Secondary 17B65, 33D15, characters, Primary 05A19, 05E05, 11B65, \(q\)-series, 0102 computer and information sciences, q-series, 01 natural sciences, Basic hypergeometric functions in one variable, \({}_r\phi_s\), 0102 Applied Mathematics, analytic generalization, Mathematics - Quantum Algebra, dedekinds eta-function, FOS: Mathematics, Kostka polynomials, Mathematics - Combinatorics, Quantum Algebra (math.QA), series, 0101 mathematics, Combinatorial identities, bijective combinatorics, branching functions, Symmetric functions and generalizations, strange formula, tensor-products, Kac-Moody (super)algebras, extended affine Lie algebras, toroidal Lie algebras, Binomial coefficients, factorials, \(q\)-identities, Bailey's lemma, Combinatorics (math.CO), lie-algebras
Document Type:
Academic journal
Article
File Description:
application/xml
Language:
English
ISSN:
1572-9192
0925-9899
0925-9899
DOI:
10.1023/b:jaco.0000047280.16877.1f
DOI:
10.48550/arxiv.math/0207030
Access URL:
http://arxiv.org/pdf/math/0207030
http://arxiv.org/abs/math/0207030
https://zbmath.org/2146021
https://doi.org/10.1023/b:jaco.0000047280.16877.1f
https://rd.springer.com/article/10.1023/B%3AJACO.0000047280.16877.1f
https://link.springer.com/content/pdf/10.1023/B:JACO.0000047280.16877.1f.pdf
https://espace.library.uq.edu.au/view/UQ:188981
https://link.springer.com/article/10.1023/B:JACO.0000047280.16877.1f
http://ui.adsabs.harvard.edu/abs/2002math......7030W/abstract
http://arxiv.org/abs/math/0207030
https://zbmath.org/2146021
https://doi.org/10.1023/b:jaco.0000047280.16877.1f
https://rd.springer.com/article/10.1023/B%3AJACO.0000047280.16877.1f
https://link.springer.com/content/pdf/10.1023/B:JACO.0000047280.16877.1f.pdf
https://espace.library.uq.edu.au/view/UQ:188981
https://link.springer.com/article/10.1023/B:JACO.0000047280.16877.1f
http://ui.adsabs.harvard.edu/abs/2002math......7030W/abstract
Rights:
Springer Nature TDM
arXiv Non-Exclusive Distribution
arXiv Non-Exclusive Distribution
Accession Number:
edsair.doi.dedup.....882f4e2adf7097e2865be4eaef6b50d5
Database:
OpenAIRE
Further Information
Using the theory of Kostka polynomials, we prove an A_{n-1} version of Bailey's lemma at integral level. Exploiting a new, conjectural expansion for Kostka numbers, this is then generalized to fractional levels, leading to a new expression for admissible characters of A_{n-1}^{(1)} and to identities for A-type branching functions.
39 pages, AMS-LaTeX