Result: Iterative approximation of fixed points of generalized $ \alpha _{m} $-nonexpansive mappings in modular spaces

Title:
Iterative approximation of fixed points of generalized $ \alpha _{m} $-nonexpansive mappings in modular spaces
Source:
AIMS Mathematics, Vol 8, Iss 11, Pp 26922-26944 (2023)
Publisher Information:
American Institute of Mathematical Sciences (AIMS), 2023.
Publication Year:
2023
Document Type:
Academic journal Article<br />Other literature type
ISSN:
2473-6988
DOI:
10.3934/math.20231378
DOI:
10.60692/g13ga-j1210
DOI:
10.60692/t91an-hpq67
Accession Number:
edsair.doi.dedup.....8c934e71daf27637f95b52a8e4ea3a2e
Database:
OpenAIRE

Further Information

Our aim of this work is to approximate the fixed points of generalized $ \alpha _{m} $-nonexpansive mappings employing $ AA $-iterative scheme in the structure of modular spaces. The results of fixed points for generalized $ \alpha _{m} $-nonexpansive mappings is proven in this context. Moreover, the stability of the scheme and data dependence results are given for $ m $-contraction mappings. In order to demonstrate that the $ AA $-iterative scheme converges faster than some other schemes for generalized $ \alpha_{m} $-nonexpansive mappings, numerical examples are shown at the end.