Treffer: On sets of elements of the same order in the alternating group $A_n$: On sets of elements of the same order in the alternating group \(A_n\)

Title:
On sets of elements of the same order in the alternating group $A_n$: On sets of elements of the same order in the alternating group \(A_n\)
Source:
Publicationes Mathematicae Debrecen. 34:313-315
Publisher Information:
University of Debrecen/ Debreceni Egyetem, 2022.
Publication Year:
2022
Document Type:
Fachzeitschrift Article
File Description:
application/xml
ISSN:
0033-3883
DOI:
10.5486/pmd.1987.34.3-4.15
Accession Number:
edsair.doi.dedup.....93c8c4f5285245cc977b8bdec48aa95e
Database:
OpenAIRE

Weitere Informationen

In the paper under review the following theorems are proved. Theorem A: For \(n>4\), every element of \(A_ n\) can be written as the product of two elements of order 2 in \(A_ n\) if and only if \(n\in \{5,6,10,14\}\). Theorem B: For \(n>2\), every element of \(A_ n\) is the product of two elements of order 3. Theorem A is a strengthening of a result of \textit{J. L. Brenner}, \textit{M. Randall} and \textit{J. Riddell} [Colloq. Math. 32, 39-48 (1974; Zbl 0273.20003)]. Theorem B is a rediscovery of a result of \textit{J. L. Brenner} and \textit{J. Riddell} [Am. Math. Mon. 84, 39-40 (1977; Zbl 0445.05002)]. \textit{J. L. Brenner} and \textit{R. J. Evans} [J. Comb. Theory, Ser. A 45, 196-206 (1987; Zbl 0621.20017)] proved the corresponding result for elements of order 5 if \(n\geq 15\).