Result: A generalization of Freiman's 3k-3 Theorem: A generalization of Freiman's \(3k-3\) theorem
Title:
A generalization of Freiman's 3k-3 Theorem: A generalization of Freiman's \(3k-3\) theorem
Authors:
Source:
Acta Arithmetica. 103:147-156
Publisher Information:
Institute of Mathematics, Polish Academy of Sciences, 2002.
Publication Year:
2002
Subject Terms:
Document Type:
Academic journal
Article
File Description:
application/xml
Language:
English
ISSN:
1730-6264
0065-1036
0065-1036
DOI:
10.4064/aa103-2-4
Access URL:
https://www.impan.pl/shop/publication/transaction/download/product/82955?download.pdf
https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/acta-arithmetica/all/103/2/82955/a-generalization-of-freiman-s-3k-3-theorem
https://eudml.org/doc/278278
http://journals.impan.pl/cgi-bin/doi?aa103-2-4
http://ui.adsabs.harvard.edu/abs/2002AcAri.103..147H/abstract
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.bwnjournal-article-doi-10_4064-aa103-2-4
https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/acta-arithmetica/all/103/2/82955/a-generalization-of-freiman-s-3k-3-theorem
https://eudml.org/doc/278278
http://journals.impan.pl/cgi-bin/doi?aa103-2-4
http://ui.adsabs.harvard.edu/abs/2002AcAri.103..147H/abstract
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.bwnjournal-article-doi-10_4064-aa103-2-4
Accession Number:
edsair.doi.dedup.....a07f9b83f6ebf1ba34b05b567178ceaf
Database:
OpenAIRE
Further Information
Let \(A\) be a set of integers, \(|A|=k\). A classical result of Freiman asserts that if \(|A+A|\leq 3k-4\), then \(A\) is contained in a short arithmetic progression, while for \(|A+A|=3k-3\) there is another structure (two progressions) and an isolated case. This theorem is now extended to sums of the form \(A+tA\), where \(tA = \{ta: a\in A \}\). The conclusion is the same: either \(A\) is contained in a short arithmetic progression, or \(t=1\) or \(-1\) and \(A\) is the union of two arithmetic progressions with a common difference, or \(A\) is the same 6-element exceptional configuration. The proof is based on the isoperimetric method of the first author.