Treffer: Generalized poly-Cauchy polynomials and their interpolating functions
Title:
Generalized poly-Cauchy polynomials and their interpolating functions
Authors:
Source:
Colloquium Mathematicum. 136:13-30
Publisher Information:
Institute of Mathematics, Polish Academy of Sciences, 2014.
Publication Year:
2014
Subject Terms:
poly-Cauchy polynomials, interpolating functions, Other combinatorial number theory, Arakawa-Kaneko zeta function, Exact enumeration problems, generating functions, Bell and Stirling numbers, 0102 computer and information sciences, Bernoulli and Euler numbers and polynomials, poly-Cauchy numbers, 01 natural sciences, poly-Bernoulli numbers, Stirling numbers
Document Type:
Fachzeitschrift
Article
File Description:
application/xml
Language:
English
ISSN:
1730-6302
0010-1354
0010-1354
DOI:
10.4064/cm136-1-2
Access URL:
https://eudml.org/doc/283583
http://journals.impan.pl/cgi-bin/doi?cm136-1-2
https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=201902217941854883
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-1-2
https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/colloquium-mathematicum/all/136/1/88029/generalized-poly-cauchy-polynomials-and-their-interpolating-functions
http://journals.impan.pl/cgi-bin/doi?cm136-1-2
https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=201902217941854883
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.bwnjournal-article-doi-10_4064-cm136-1-2
https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/colloquium-mathematicum/all/136/1/88029/generalized-poly-cauchy-polynomials-and-their-interpolating-functions
Accession Number:
edsair.doi.dedup.....ab42b948227ef1e8a19105fc606c028e
Database:
OpenAIRE
Weitere Informationen
The poly-Cauchy polynomial of the first kind is defined as \(\int_0^1\cdots \int_0^1 (x_1x_2\cdots x_k+z)_n\, dx_1\cdots dx_k\), where the integral of the \(n\)th falling factorial is \(k\)-fold. The paper studies arithmetic, analytic and combinatorial properties poly-Cauchy polynomials and their further generalizations.