Treffer: Implementing data-dependent triangulations with higher order Delaunay triangulations

Title:
Implementing data-dependent triangulations with higher order Delaunay triangulations
Contributors:
Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. DCCG - Grup de recerca en geometria computacional, combinatoria i discreta
Source:
Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
ISPRS International Journal of Geo-Information, Vol 6, Iss 12, p 390 (2017)
ISPRS International Journal of Geo-Information; Volume 6; Issue 12; Pages: 390
Publisher Information:
ACM, 2016.
Publication Year:
2016
Subject Terms:
Programari, Matemàtiques i estadística::Investigació operativa::Programació matemàtica [Àrees temàtiques de la UPC], Geometry, Matemàtiques i estadística::Matemàtica aplicada a les ciències [Àrees temàtiques de la UPC], 90 Operations research, mathematical programming::90C Mathematical programming [Classificació AMS], Delaunay triangulation, triangulated irregular network, 0102 computer and information sciences, 02 engineering and technology, 68 Computer science::68N Software [Classificació AMS], Geometry, analytic, 01 natural sciences, Computational geometry, higher order Delaunay triangulation, Matemàtiques i estadística::Anàlisi numèrica [Àrees temàtiques de la UPC], Programació (Matemàtica), 0202 electrical engineering, electronic engineering, information engineering, Information systems, Computer software, Classificació AMS::68 Computer science::68N Software, Àrees temàtiques de la UPC::Matemàtiques i estadística::Investigació operativa::Programació matemàtica, Theory of computation, Geography (General), data-dependent triangulation, digital terrain model, Programming (Mathematics), Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica, 32 Several complex variables and analytic spaces::32B Local analytic geometry [Classificació AMS], Geographic information systems, Classificació AMS::90 Operations research, mathematical programming::90C Mathematical programming, Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències, analytic, G1-922, Classificació AMS::32 Several complex variables and analytic spaces::32B Local analytic geometry, Geometria analítica, General and reference
Document Type:
Fachzeitschrift Article<br />Conference object<br />Other literature type
File Description:
application/pdf
DOI:
10.1145/2996913.2996958
DOI:
10.3390/ijgi6120390
Accession Number:
edsair.doi.dedup.....ad788dff33f918bdf76134ac45ab5a6c
Database:
OpenAIRE

Weitere Informationen

The Delaunay triangulation is the standard choice for building triangulated irregular networks (TINs) to represent terrain surfaces. However, the Delaunay triangulation is based only on the 2D coordinates of the data points, ignoring their elevation. This can affect the quality of the approximating surface. In fact, it has long been recognized that sometimes it may be beneficial to use other, non-Delaunay, criteria that take elevation into account to build TINs. Data-dependent triangulations were introduced decades ago to address this exact issue. However, data-dependent trianguations are rarely used in practice, mostly because the optimization of data-dependent criteria often results in triangulations with many slivers (i.e., thin and elongated triangles), which can cause several types of problems. More recently, in the field of computational geometry, higher order Delaunay triangulations (HODTs) were introduced, trying to tackle both issues at the same time—data-dependent criteria and good triangle shape—by combining data-dependent criteria with a relaxation of the Delaunay criterion. In this paper, we present the first extensive experimental study on the practical use of HODTs, as a tool to build data-dependent TINs. We present experiments with two USGS 30m digital elevation models that show that the use of HODTs can give significant improvements over the Delaunay triangulation for the criteria previously identified as most important for data-dependent triangulations, often with only a minor increase in running times. The triangulations produced have measure values comparable to those obtained with pure data-dependent approaches, without compromising the shape of the triangles, and can be computed much faster.