Treffer: Interpolation in the Nevanlinna and Smirnov classes and harmonic majorants

Title:
Interpolation in the Nevanlinna and Smirnov classes and harmonic majorants
Contributors:
Hartmann, Andreas, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Source:
Journal of Functional Analysis. 217:1-37
Publisher Information:
Elsevier BV, 2004.
Publication Year:
2004
Document Type:
Fachzeitschrift Article
File Description:
application/xml; application/pdf
Language:
English
ISSN:
0022-1236
DOI:
10.1016/j.jfa.2004.02.015
Rights:
Elsevier Non-Commercial
Accession Number:
edsair.doi.dedup.....aeba0abe23f35b9d10300be74b4b85d5
Database:
OpenAIRE

Weitere Informationen

Let \(X\) be a class of holomorphic functions on the unit disc \({\mathbb D}\). A discrete sequence \(\Lambda(\subset{\mathbb D})\) is called interpolating for \(X\) if \(X| _{\Lambda}\) is an ideal in \(\ell^\infty\). The set of all interpolating sequences for \(X\) is denoted by \(\text{Int }X\). For any algebra \(X\) containing the constants the Blaschke condition \(\sum_\Lambda(1-| \lambda| )0\). The authors consider a free interpolation problem in the Nevanlinna class \(N\) and the Smirnov class \(N^+\). Let \(\varphi_\Lambda(z)=\text{log }| B_\lambda(\lambda)| ^{-1}\) if \(z=\lambda\in\Lambda\), and \(\varphi_\Lambda(z)=0\) otherwise. It is shown that \(\Lambda\in\text{Int } N\) if and only if the function \(\varphi_\Lambda\) admits a harmonic majorant. A positive harmonic majorant \(h(z)\) is called \textit{quasi-bounded} if it is a Poisson integral of an absolutely continuous positive measure. A sequence \(\Lambda\) is shown to be in \(\text{Int } N^+\) if and only if the function \(\varphi_\Lambda\) admits a quasi-bounded harmonic majorant. The class of functions which admit harmonic (quasi-bounded) majorant is characterized in dual terms. Simple geometric necessary conditions for \(\Lambda\) to be in \(\text{Int } N\) (\(\text{Int } N^+\)) are obtained: \(\Lambda\in\text{Int } N\Longrightarrow\lim_{| \lambda| \to 1}(1-| \lambda| )\log| B_\lambda(\lambda)| ^{-1}