Treffer: Topological invariance of weights for weighted homogeneous singularities
Title:
Topological invariance of weights for weighted homogeneous singularities
Authors:
Source:
Kodai Math. J. 9, no. 2 (1986), 188-190
Publisher Information:
Tokyo Institute of Technology, Department of Mathematics, 1986.
Publication Year:
1986
Subject Terms:
Document Type:
Fachzeitschrift
Article<br />Other literature type
File Description:
application/xml; application/pdf
ISSN:
0386-5991
DOI:
10.2996/kmj/1138037201
Access URL:
https://projecteuclid.org/journals/kodai-mathematical-journal/volume-9/issue-2/Topological-invariance-of-weights-for-weighted-homogeneous-singularities/10.2996/kmj/1138037201.pdf
https://zbmath.org/3989759
https://doi.org/10.2996/kmj/1138037201
https://core.ac.uk/display/58897293
https://projecteuclid.org/journals/kodai-mathematical-journal/volume-9/issue-2/Topological-invariance-of-weights-for-weighted-homogeneous-singularities/10.2996/kmj/1138037201.full
http://projecteuclid.org/euclid.kmj/1138037201
https://zbmath.org/3989759
https://doi.org/10.2996/kmj/1138037201
https://core.ac.uk/display/58897293
https://projecteuclid.org/journals/kodai-mathematical-journal/volume-9/issue-2/Topological-invariance-of-weights-for-weighted-homogeneous-singularities/10.2996/kmj/1138037201.full
http://projecteuclid.org/euclid.kmj/1138037201
Accession Number:
edsair.doi.dedup.....b5f7de998172d5e3386d0aa0e6b54bfc
Database:
OpenAIRE
Weitere Informationen
A polynomial \(f(z_ 1,...,z_ n)\) is called weighted homogeneous with weights \((r_ 1,...,r_ n)\in {\mathbb{Q}}^ n\) if \(i_ 1r_ 1+...+i_ nr_ n=1\) for any monomial \(\alpha z_ 1^{i_ 1}...z_ n^{i_ n}\) of f, and non-degenerate if \(\{(\partial f/\partial z_ 1)(z)=...=(\partial f/\partial z_ n)(z)=0\}=\{0\}\) as germs at the origin of \({\mathbb{C}}^ n\). The author gives here a simple proof of the following theorem: Let \(f_ i(z_ 1,z_ 2)\) \((i=1,2)\) be non- degenerate weighted homogeneous polynomials with weights \((r_{i1},r_{i2})\) such that \(0