Treffer: On Hilbert Cubes in Certain Sets: On Hilbert cubes in certain sets

Title:
On Hilbert Cubes in Certain Sets: On Hilbert cubes in certain sets
Source:
The Ramanujan Journal. 3:303-314
Publisher Information:
Springer Science and Business Media LLC, 1999.
Publication Year:
1999
Document Type:
Fachzeitschrift Article
File Description:
application/xml
Language:
English
ISSN:
1572-9303
1382-4090
DOI:
10.1023/a:1009883404485
Rights:
Springer Nature TDM
Accession Number:
edsair.doi.dedup.....bc4d60821c54869c4d8561e54beb1b92
Database:
OpenAIRE

Weitere Informationen

Given \(k\geq 1\), a set \(H\subset \mathbb{N}\) is called a cube of size \(k\) if there exist \(a>0\) and \(x_1,\dots,x_k\) such that \(H=\{a+\sum_{i=1}^k\varepsilon_ix_i:\varepsilon=0\text{ or }1\}\). If the set of \(x\)'s is infinite the cube is called infinite. If \(\mathcal{A}\subset \mathbb{N}\) and \(n\in\mathbb{N}\) then \(F_{\mathcal{A}}(n)\) denotes the size of the largest Hilbert cube contained in \(\mathcal{A}\cap\{1,\dots,n\}\). Finally, let \(\mathcal{S}\), \(\mathcal{P}\), and \(\mathcal{P}_k\) denote the set of all squares, the set of all primes, and the set of positive integers composed of the primes not exceeding \(k\), respectively. The authors prove that (1) for \(n>n_0\) we have \(F_{\mathcal{S}}(n)0\), \(n>n_0(\varepsilon)\) we have \((1.1-\varepsilon)\log\log n0\), \(p>p_0(\varepsilon)\) we have \((1.1-\varepsilon)\log\log p