Result: Products of random mappings

Title:
Products of random mappings
Source:
Ergodic Theory and Dynamical Systems. 20:517-529
Publisher Information:
Cambridge University Press (CUP), 2000.
Publication Year:
2000
Document Type:
Academic journal Article
File Description:
application/xml
Language:
English
ISSN:
1469-4417
0143-3857
DOI:
10.1017/s0143385700000250
Rights:
Cambridge Core User Agreement
Accession Number:
edsair.doi.dedup.....bf087e5db57c78ccd157b109d9eef73e
Database:
OpenAIRE

Further Information

Suppose that $X^1,X^2,\dotsc$ is a stationary stochastic process of positive $k\times k$ matrices, and let ${}^nY^1=X^nX^{n-1}\dots X^1$ be the corresponding product matrices. For a special case, Bellman showed that the elements $[{}^nY^1]_{ij}$ converge in the sense that $n^{-1}\mathrm{E}\{\log[{}^nY^1]_{ij}\}\rightarrow a$ as $n\rightarrow\infty$. The constant $a$ is independent of $i$ and $j$. Bellman also conjectured that, asymptotically, the $n^{-1/2}\{\log[{}^nY^1]_{ij}-na\}$ terms are distributed according to a normal distribution with a common variance, independent of $ij$. Later Furstenberg and Kesten generalized and strengthened Bellman's result and established the validity of his conjecture.This paper extends these results to the case of nonlinear mappings that are monotonic and homogeneous of degree one on $R^k_+$. Specifically, given a stationary process $H^1,H^2,\dots$ of such mappings, we define the composite mappings ${}^nF^1(\cdot)=H^n(H^{n-1}(\dots (H^1(\cdot))\dots)$. Under appropriate conditions, the components $[{}^nF^1(x^0)]_i$ have the property that, almost surely, $n^{-1}\log[{}^nF^1(x^0)]_i\rightarrow a$ independent of $x^0$ and $i$. Furthermore the components $n^{-1/2}\{\log[{}^nF^1(x^0)]_i-na\}$ are asymptotically distributed according to a normal distribution with a common variance.