Treffer: A RECURRENCE RELATION FOR BERNOULLI NUMBERS: A recurrence relation for Bernoulli numbers

Title:
A RECURRENCE RELATION FOR BERNOULLI NUMBERS: A recurrence relation for Bernoulli numbers
Source:
Bulletin of the Korean Mathematical Society. 42:617-622
Publisher Information:
The Korean Mathematical Society, 2005.
Publication Year:
2005
Document Type:
Fachzeitschrift Article
File Description:
application/xml
Language:
English
ISSN:
1015-8634
DOI:
10.4134/bkms.2005.42.3.617
Accession Number:
edsair.doi.dedup.....c3898e04fd9ca4476e7b96dafb6ad4fb
Database:
OpenAIRE

Weitere Informationen

Acting on a suggestion of \textit{V. Namias} [Am. Math. Mon. 93, 25--29 (1986; Zbl 0615.05010)] the authors use the multiplication formula for the gamma function to derive the following family of recursions for Bernoulli numbers obtained by \textit{F. T. Howard} [J. Number Theory 52, No. 1, 157--172 (1995; Zbl 0844.11019)]: \[ B_s= {1\over k(1-k^s)} \sum^{s-1}_{m= 0} {s\choose m} k^m B_m \sum^{k-1}_{j=1} j^{s- m}, \] where \(k= 2,3,\dots\)\ . Namias treated \(k= 2\) and \(k= 3\).