Result: Bottom-Up Estimation of Stand Leaf Area Index From Individual Tree Measurement Using Terrestrial Laser Scanning Data

Title:
Bottom-Up Estimation of Stand Leaf Area Index From Individual Tree Measurement Using Terrestrial Laser Scanning Data
Contributors:
Nerry, Françoise, University of Chinese Academy of Sciences Beijing (UCAS), Chinese Academy of Sciences Beijing (CAS), Beijing Normal University (BNU), Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et Physiologie Intégratives de l’Arbre en environnement Fluctuant (PIAF), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Clermont Auvergne (UCA)
Source:
IEEE Transactions on Geoscience and Remote Sensing. 62:1-15
Publisher Information:
Institute of Electrical and Electronics Engineers (IEEE), 2024.
Publication Year:
2024
Document Type:
Academic journal Article
File Description:
application/pdf
ISSN:
1558-0644
0196-2892
DOI:
10.1109/tgrs.2024.3372293
Rights:
IEEE Copyright
Accession Number:
edsair.doi.dedup.....e63cdce04c3399e8b0f50921f6d50c35
Database:
OpenAIRE

Further Information

Leaf area (LA) parameters are crucial in ecosystem studies. As ecophysiological models advance toward finer detail, accurately estimating LA at various scales becomes essential, particularly for diverse units like urban individual trees. Several algorithms based on terrestrial laser scanning (TLS) data have been developed to obtain the LA of individual trees. However, their use at the stand level needs further research. In this study, the comparative shortest-path algorithm (CSP) is introduced for the automatic individual tree segmentation, thereby facilitating the application of the path length distribution method (PATH) for LA estimation at the stand level. Using high-density TLS data, we presented a bottom-up estimation of stand LA index (LAI) from 50 individual tree measurements and validated the results at different scales. At the tree scale, the LA derived from TLS and the allometric model were highly correlated, with an R -value of 0.83. At the stand scale, the proposed method provides consistent results with the allometric and TRAC instrument measurements, performing better than vertical upward photography. Generally, 23 shared stations under the forest are enough to accurately obtain the LA of 50 trees and the LAI in an urban forest stand. Sensitivity analysis shows that the method is not sensitive to TLS scan resolution and parameters used in tree crown envelope reconstruction. The proposed bottom-up approach provides a new way of estimating the LAI at stand level using TLS and has the advantage of providing multilevel LA information and avoiding the scale effect.