Treffer: Phase transition for the existence of van Kampen 2–complexes in random groups

Title:
Phase transition for the existence of van Kampen 2–complexes in random groups
Contributors:
Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Institut Camille Jordan (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
Source:
Algebraic & Geometric Topology. 24:3897-3917
Publication Status:
Preprint
Publisher Information:
Mathematical Sciences Publishers, 2024.
Publication Year:
2024
Document Type:
Fachzeitschrift Article
Language:
English
ISSN:
1472-2739
1472-2747
DOI:
10.2140/agt.2024.24.3897
DOI:
10.48550/arxiv.2210.08234
Rights:
CC BY
Accession Number:
edsair.doi.dedup.....e77932c1db1053f5cedef21708e82dd6
Database:
OpenAIRE

Weitere Informationen

Gromov showed that (1993) with high probability, every bounded and reduced van Kampen diagram $D$ of a random group at density $d$ satisfies the isoperimetric inequality $|\partial D|\geq (1-2d-s)|D|\ell$. In this article, we adapt Gruber-Mackay's prove for random triangular groups, showing a non-reduced 2-complex version of this inequality. Moreover, for any 2-complex $Y$ of a given geometric form, we exhibit a phase transition: we give explicitly a critical density $d_c$ depending only on $Y$ such that, in a random group at density $d$, if $dd_c$ then there exists reduced van Kampen 2-complexes of the form $Y$. As an application, we show a phase transition for the $C(p)$ small-cancellation condition: for a random group at density $d$, if $d1/(p+1)$ then it does not satisfy $C(p)$.
21 pages, 10 figures