Treffer: Diophantine Equations for Second-Order Recursive Sequences of Polynomials: Diophantine equations for second-order recursive sequences of polynomials
Title:
Diophantine Equations for Second-Order Recursive Sequences of Polynomials: Diophantine equations for second-order recursive sequences of polynomials
Authors:
Source:
The Quarterly Journal of Mathematics. 52:161-169
Publisher Information:
Oxford University Press (OUP), 2001.
Publication Year:
2001
Subject Terms:
Fibonacci polynomials, Diophantine equation, recursive sequences, Fibonacci and Lucas numbers and polynomials and generalizations, higher-order Diophantine equation, generalized Fibonacci polynomials, 0101 mathematics, Dickson polynomial, Higher degree equations, Fermat's equation, recursive sequence, 01 natural sciences, Polynomials in general fields (irreducibility, etc.)
Document Type:
Fachzeitschrift
Article
File Description:
application/xml
Language:
English
ISSN:
1464-3847
0033-5606
0033-5606
DOI:
10.1093/qjmath/52.2.161
Access URL:
https://www.bib.irb.hr/84107
https://web.math.pmf.unizg.hr/~duje/pdf/dutichy.pdf
https://graz.pure.elsevier.com/en/publications/diophantine-equations-for-second-order-recursive-sequences-of-pol
https://documat.unirioja.es/servlet/articulo?codigo=2828400
https://academic.oup.com/qjmath/article-abstract/52/2/161/1599800/
https://dialnet.unirioja.es/servlet/articulo?codigo=2828400
https://web.math.pmf.unizg.hr/~duje/pdf/dutichy.pdf
https://graz.pure.elsevier.com/en/publications/diophantine-equations-for-second-order-recursive-sequences-of-pol
https://documat.unirioja.es/servlet/articulo?codigo=2828400
https://academic.oup.com/qjmath/article-abstract/52/2/161/1599800/
https://dialnet.unirioja.es/servlet/articulo?codigo=2828400
Accession Number:
edsair.doi.dedup.....e7b470f8340e42c7e85c58b72c80716d
Database:
OpenAIRE
Weitere Informationen
Let B be a nonzero integer. Let define the sequence of polynomials G_n(x) by G_0(x)=0, G_1(x)=1, G_{n+1}(x) = xG_{n}(x) + BG_{n-1}(x). We prove that the diophantine equation G_m(x) = G_n(y) for m,n >= 3, m <> n has only finitely many solutions.