Treffer: Specializations of MacMahon symmetric functions and the polynomial algebra
Title:
Specializations of MacMahon symmetric functions and the polynomial algebra
Authors:
Contributors:
Universidad de Sevilla. Departamento de álgebra
Source:
idUS. Depósito de Investigación de la Universidad de Sevilla
Universidad de Sevilla (US)
instname
Universidad de Sevilla (US)
instname
Publisher Information:
Elsevier BV, 2002.
Publication Year:
2002
Subject Terms:
polynomial bases, Symmetric functions and generalizations, polynomial basis, 0102 computer and information sciences, connection coefficients, 01 natural sciences, Theoretical Computer Science, symmetric group, connection coefficient, vector symmetric function, Discrete Mathematics and Combinatorics, MacMahon symmetric function, 0101 mathematics
Document Type:
Fachzeitschrift
Article
File Description:
application/pdf; application/xml
Language:
English
ISSN:
0012-365X
DOI:
10.1016/s0012-365x(01)00263-1
Access URL:
https://idus.us.es/xmlui/handle/11441/41678
http://hdl.handle.net/11441/41678
https://idus.us.es/handle/11441/41678
https://zbmath.org/1741713
https://doi.org/10.1016/s0012-365x(01)00263-1
https://dl.acm.org/doi/10.1016/S0012-365X%2801%2900263-1
https://www.sciencedirect.com/science/article/abs/pii/S0012365X01002631
https://dblp.uni-trier.de/db/journals/dm/dm246.html#Rosas02
https://www.sciencedirect.com/science/article/pii/S0012365X01002631#!
https://idus.us.es/bitstream/11441/41678/1/Specializations%20of%20MacMahon%20symmetric%20functions%20and%20the%20polynomial%20algebra.pdf
http://hdl.handle.net/11441/41678
https://idus.us.es/handle/11441/41678
https://zbmath.org/1741713
https://doi.org/10.1016/s0012-365x(01)00263-1
https://dl.acm.org/doi/10.1016/S0012-365X%2801%2900263-1
https://www.sciencedirect.com/science/article/abs/pii/S0012365X01002631
https://dblp.uni-trier.de/db/journals/dm/dm246.html#Rosas02
https://www.sciencedirect.com/science/article/pii/S0012365X01002631#!
https://idus.us.es/bitstream/11441/41678/1/Specializations%20of%20MacMahon%20symmetric%20functions%20and%20the%20polynomial%20algebra.pdf
Rights:
Elsevier Non-Commercial
CC BY NC ND
CC BY NC ND
Accession Number:
edsair.doi.dedup.....eca1fc24bdb7e45f9b0d3a3a2f2896b9
Database:
OpenAIRE
Weitere Informationen
A MacMahon symmetric function is a formal power series in a finite number of alphabets that is invariant under the diagonal action of the symmetric group. We use a combinatorial construction of the different bases of the vector space of MacMahon symmetric functions found by the author to obtain their image under the principal specialization: the powers, rising and falling factorials. Then, we compute the connection coefficients of the different polynomial bases in a combinatorial way.