Treffer: Specializations of MacMahon symmetric functions and the polynomial algebra

Title:
Specializations of MacMahon symmetric functions and the polynomial algebra
Contributors:
Universidad de Sevilla. Departamento de álgebra
Source:
idUS. Depósito de Investigación de la Universidad de Sevilla
Universidad de Sevilla (US)
instname
Publisher Information:
Elsevier BV, 2002.
Publication Year:
2002
Document Type:
Fachzeitschrift Article
File Description:
application/pdf; application/xml
Language:
English
ISSN:
0012-365X
DOI:
10.1016/s0012-365x(01)00263-1
Rights:
Elsevier Non-Commercial
CC BY NC ND
Accession Number:
edsair.doi.dedup.....eca1fc24bdb7e45f9b0d3a3a2f2896b9
Database:
OpenAIRE

Weitere Informationen

A MacMahon symmetric function is a formal power series in a finite number of alphabets that is invariant under the diagonal action of the symmetric group. We use a combinatorial construction of the different bases of the vector space of MacMahon symmetric functions found by the author to obtain their image under the principal specialization: the powers, rising and falling factorials. Then, we compute the connection coefficients of the different polynomial bases in a combinatorial way.