Treffer: On Combinatorial Cubes: On combinatorial cubes

Title:
On Combinatorial Cubes: On combinatorial cubes
Source:
The Ramanujan Journal. 8:303-307
Publisher Information:
Springer Science and Business Media LLC, 2004.
Publication Year:
2004
Document Type:
Fachzeitschrift Article
File Description:
application/xml
Language:
English
ISSN:
1572-9303
1382-4090
DOI:
10.1007/s11139-004-0140-6
Rights:
Springer TDM
Accession Number:
edsair.doi.dedup.....f30c807d39ee4656c3cd7fdb39f44f13
Database:
OpenAIRE

Weitere Informationen

Given \(k\geq 1\), a set \(H\subset \mathbb{N}\) is called a cube of size \(k\) if there exist \(a>0\) and \(x_1,\dots,x_k\) such that \(H=\left\{a+\sum_{i=1}^k\varepsilon_ia_i:\varepsilon=0\text{ or }1\right\}\) and we write \(\dim H=k\). Let \(r_3(n)\) be the maximal number of integers that can be selected from the interval \([1,n]\) without including a three--term arithmetic progression. The author proves that there exists a \(A\subset[1,n]\) for which \(| A| \geq r_3(n)/3\) and \(\max_{H\subset[1,n]}\dim H\leq (1/\log 2)\log\log 2\).