Result: On a combinatorial identity
Title:
On a combinatorial identity
Authors:
Source:
Publicationes Mathematicae Debrecen. 31:217-219
Publisher Information:
University of Debrecen/ Debreceni Egyetem, 2022.
Publication Year:
2022
Subject Terms:
Document Type:
Academic journal
Article
File Description:
application/xml
ISSN:
0033-3883
DOI:
10.5486/pmd.1984.31.3-4.09
Access URL:
Accession Number:
edsair.doi.dedup.....f465741dbbdaecb07046d8861fb053b2
Database:
OpenAIRE
Further Information
The author proves that the only solution of the difference equation \[ \Phi (2(v+1))+\sum^{v}_{k=1}\binom{2v}{2k-1} \Phi (2k) \Phi (2(v-k+1))=0 \] subject to the initial condition \(\Phi (2)=1/4\) is \(\Phi (2k)=((2^{2k}-1)/2k) B_{2k}\) where the \(B_{2k}\) are the even-indexed Bernoulli numbers. Using this result, he then proves that (1/k)\(| B_{2k}|^{1/2k}\to 1/\pi e\) as \(k\to \infty\).