American Psychological Association 6th edition

Yuri Kryakin, & Walter Trebels. (2002). q-Moduli of Continuity in H( ), p>0, and an Inequality of Hardy and Littlewood: \(q\)-moduli of continuity in \(H^{p}(\mathbb D)\), \(p>0\) and an inequality of Hardy and Littlewood. Journal of Approximation Theory, 115, 238-259. https://doi.org/10.1006/jath.2001.3656

ISO-690 (author-date, English)

YURI KRYAKIN und WALTER TREBELS, 2002. q-Moduli of Continuity in H( ), p>0, and an Inequality of Hardy and Littlewood: \(q\)-moduli of continuity in \(H^{p}(\mathbb D)\), \(p>0\) and an inequality of Hardy and Littlewood. Journal of Approximation Theory. 1 April 2002. Vol. 115, , p. 238-259. DOI 10.1006/jath.2001.3656.

Modern Language Association 9th edition

Yuri Kryakin, und Walter Trebels. „Q-Moduli of Continuity in H( ), p>0, and an Inequality of Hardy and Littlewood: \(q\)-Moduli of Continuity in \(H^{p}(\mathbb D)\), \(p>0\) and an Inequality of Hardy and Littlewood“. Journal of Approximation Theory, Bd. 115, April 2002, S. 238-59, https://doi.org/10.1006/jath.2001.3656.

Mohr Siebeck - Recht (Deutsch - Österreich)

Yuri Kryakin/Walter Trebels: q-Moduli of Continuity in H( ), p>0, and an Inequality of Hardy and Littlewood: \(q\)-moduli of continuity in \(H^{p}(\mathbb D)\), \(p>0\) and an inequality of Hardy and Littlewood, Journal of Approximation Theory 2002, 238-259.

Emerald - Harvard

Yuri Kryakin und Walter Trebels. (2002), „q-Moduli of Continuity in H( ), p>0, and an Inequality of Hardy and Littlewood: \(q\)-moduli of continuity in \(H^{p}(\mathbb D)\), \(p>0\) and an inequality of Hardy and Littlewood“, Journal of Approximation Theory, Vol. 115, S. 238-259.

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.