Treffer: On Global Applicability and Location Transferability of Generative Deep Learning Models for Precipitation Downscaling

Title:
On Global Applicability and Location Transferability of Generative Deep Learning Models for Precipitation Downscaling
Publication Year:
2025
Subject Terms:
Document Type:
Report Working Paper
Accession Number:
edsarx.2512.01400
Database:
arXiv

Weitere Informationen

Deep learning offers promising capabilities for the statistical downscaling of climate and weather forecasts, with generative approaches showing particular success in capturing fine-scale precipitation patterns. However, most existing models are region-specific, and their ability to generalize to unseen geographic areas remains largely unexplored. In this study, we evaluate the generalization performance of generative downscaling models across diverse regions. Using a global framework, we employ ERA5 reanalysis data as predictors and IMERG precipitation estimates at $0.1^\circ$ resolution as targets. A hierarchical location-based data split enables a systematic assessment of model performance across 15 regions around the world.